Preparation method of NZVI-PVDF hybrid films with cation-exchange function for reductive transformation of Cr(VI)

    Xiangyu Wang Info
    Shan Cong Info
DOI: https://doi.org/10.3846/16486897.2017.1339048

Abstract

Poly (vinylidene fluoride) (PVDF) microporous film was successfully synthesized and functionalized by poly acrylic acid (PAA) for immobilization of nanoscale zero-valent iron (NZVI). PAA was innovatively introduced onto PVDF film via in situ polymerization of acrylic acid (AA) and followed by ion exchange procedure. The as-prepared PAA/PVDF-NZVI hybrids (PPN) were characterized in terms of morphology (SEM) and surface functional groups (FTIR). FTIR spectra confirms the functionalization of PVDF film by coating of PAA within its micropores. And SEM images suggested that NZVI were well immobilized onto the surface of the support. Over the reaction course, the resultant PPN hybrids demonstrated high reactivity, excellent stability and reusability for Cr(VI) removal. Results showed that lower pH and initial concentration facilitated the removal of Cr(VI) by PPN. Compared with bare NZVI, PAA/PVDF film-immobilized NZVI resulted in a lower activation energy for Cr(VI) removal, indicating that Cr(VI) reduction process with PPN is a surfacecontrolled chemical reaction. Moreover, a two-parameter pseudo-first-order model was provided and well-described the reaction kinetics of Cr(VI) over PPN under various conditions.

Keywords:

polyvinylidene fluoride, cation exchange function, hydrophilization, Cr(VI) removal, nanoscale zero-valent iron, revised kinetics, wastewater management

How to Cite

Wang, X., & Cong, S. (2018). Preparation method of NZVI-PVDF hybrid films with cation-exchange function for reductive transformation of Cr(VI). Journal of Environmental Engineering and Landscape Management, 26(1), 19-27. https://doi.org/10.3846/16486897.2017.1339048

Share

Published in Issue
March 20, 2018
Abstract Views
1046

References

Bhattacharya, M.; Dutta, S. K.; Sikder, J.; Mandal, M. K. 2014. Computational and experimental study of chromium (VI) removal in direct contact membrane distillation, Journal of Membrane Science 450: 447‒456. <a target="_blank" href= "https://doi.org/10.1016/j.memsci.2013.09.037 "> https://doi.org/10.1016/j.memsci.2013.09.037</a>

Byun, Y. J.; Kim, J. H.; Kim, S. S. 2013. Surface modification of PVDF membranes for water treatment via hydrophilic thermal cross-linking method, Desalination and Water Treatment 51(25‒27): 5371‒5378. <a target="_blank" href= "https://doi.org/10.1080/19443994.2013.768812 "> https://doi.org/10.1080/19443994.2013.768812</a>

Cao, J.; Zhang, W. X. 2006. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles, Journal of Hazardous Materials 132(2‒3): 213‒219. <a target="_blank" href= "https://doi.org/10.1016/j.jhazmat.2005.09.008 "> https://doi.org/10.1016/j.jhazmat.2005.09.008</a>

Chen, D.; Yang, K.; Wang, H.; Zhou, J.; Zhang, H. 2015. Cr(VI) removal by combined redox reactions and adsorption using pectin-stabilized nanoscale zero-valent iron for simulated chromium contaminated water, RSC Advances 5(80): 65068‒65073. <a target="_blank" href= "https://doi.org/10.1039/C5RA10573K "> https://doi.org/10.1039/C5RA10573K</a>

Dai, J.; Xiao, K.; Dong, H.; Liao, W.; Tang, X.; Zhang, Z.; Cai, S. 2014. Preparation of Al2O3/PU/PVDF composite membrane and performance comparison with PVDF membrane, PU/PVDF blending membrane, and Al2O3/PVDF hybrid membrane, Desalination and Water Treatment 57(2): 487‒494. <a target="_blank" href= "https://doi.org/10.1080/19443994.2014.967308 "> https://doi.org/10.1080/19443994.2014.967308</a>

Dong, H.; Xiao, K.; Li, X.; Wang, Z.; Guo, S. 2013. Preparation of PVDF/Al2O3 hybrid membrane via alkaline modification and chemical coupling process, Desalination and Water Treatment 51(19‒21): 3800‒3809. <a target="_blank" href= "https://doi.org/10.1080/19443994.2013.782086 "> https://doi.org/10.1080/19443994.2013.782086</a>

Fang, X.; Li, J.; Li, X.; Sun, X.; Shen, J.; Han, W.; Wang, L. 2015. Polyethyleneimine, an effective additive for polyethersulfone ultrafiltration membrane with enhanced permeability and selectivity, Journal of Membrane Science 476: 216‒223. <a target="_blank" href= "https://doi.org/10.1016/j.memsci.2014.11.021 "> https://doi.org/10.1016/j.memsci.2014.11.021</a>

Fang, Z.; Chen, J.; Qiu, X.; Qiu, X.; Cheng, W.; Zhu, L. 2011b. Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles, Desalination 268(1‒3): 60‒67. <a target="_blank" href= "https://doi.org/10.1016/j.desal.2010.09.051 "> https://doi.org/10.1016/j.desal.2010.09.051</a>

Fang, Z.; Qiu, X.; Chen, J.; Qiu, X. 2011c. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism, Journal of Hazardous Materials 185(2‒3): 958‒969. <a target="_blank" href= "https://doi.org/10.1016/j.jhazmat.2010.09.113 "> https://doi.org/10.1016/j.jhazmat.2010.09.113</a>

Fang, Z.; Qiu, X.; Huang, R.; Qiu, X.; Li, M. 2011a. Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization, Desalination 280(1 ‒ 3): 224‒231.

Horzum, N.; Demir, M. M.; Nairat, M.; Shahwan, T. 2013. Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic, RSC Advances 3(21): 7828‒7837. <a target="_blank" href= "https://doi.org/10.1039/c3ra23454a "> https://doi.org/10.1039/c3ra23454a</a>

Jiang, Z.; Zhang, S.; Pan, B.; Wang, W.; Wang, X.; Lv, L.; Zhang, W.; Zhang, Q. 2012. A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction, Journal of Hazardous Materials 233‒234: 1‒6. <a target="_blank" href= "https://doi.org/10.1016/j.jhazmat.2012.06.025 "> https://doi.org/10.1016/j.jhazmat.2012.06.025</a>

Kim, H.; Hong, H. J.; Lee, Y. J.; Shin, H. J.; Yang, J. W. 2008. Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane, Desalination 223(1–3): 212‒220. <a target="_blank" href= "https://doi.org/10.1016/j.desal.2007.03.015 "> https://doi.org/10.1016/j.desal.2007.03.015</a>

Kim, M. K.; Shanmuga Sundaram, K.; Anantha Iyengar, G.; Lee, K. P. 2015. A novel chitosan functional gel included with multiwall carbon nanotube and substituted polyaniline as adsorbent for efficient removal of chromium ion, Chemical Engineering Journal 267: 51‒64. <a target="_blank" href= "https://doi.org/10.1016/j.cej.2014.12.091 "> https://doi.org/10.1016/j.cej.2014.12.091</a>

Li, S.; Li, T.; Xiu, Z.; Jin, Z. 2010. Reduction and immobilization of chromium(VI) by nano-scale Fe0 particles supported on reproducible PAA/PVDF membrane, Journal of Environmental Monitoring 12(5): 1153‒1158. <a target="_blank" href= "https://doi.org/10.1039/b919909h ">https://doi.org/10.1039/b919909h</a>

Li, X.; Cao, J.; Zhang, W. 2008. Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-Ray photoelectron spectroscopy (HR-XPS), Applied Chemistry 47: 2131‒2139. <a target="_blank" href= "https://doi.org/10.1021/ie061655x "> https://doi.org/10.1039/b919909h</a>

Li, X.; Pang, R.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. 2013. In situ formation of Ag nanoparticles in PVDF ultrafiltration membrane to mitigate organic and bacterial fouling, Desalination 324: 48‒56. <a target="_blank" href= "https://doi.org/10.1016/j.desal.2013.05.021 "> https://doi.org/10.1016/j.desal.2013.05.021</a>

Lin, C. J.; Liou, Y. H.; Lo, S. L. 2009. Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene, Chemosphere 74(2): 314‒319. <a target="_blank" href= "https://doi.org/10.1016/j.chemosphere.2008.08.046 "> https://doi.org/10.1016/j.chemosphere.2008.08.046</a>

Ling, L.; Pan, B.; Zhang, W. X. 2015. Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV), Water Research 71: 274‒281. <a target="_blank" href= "https://doi.org/10.1016/j.watres.2015.01.002 "> https://doi.org/10.1016/j.watres.2015.01.002</a>

Lv, X.; Xu, J.; Jiang, G.; Tang, J.; Xu, X. 2012. Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions, Journal of Colloid and Interface Science 369(1): 460‒469. <a target="_blank" href= "https://doi.org/10.1016/j.jcis.2011.11.049 "> https://doi.org/10.1016/j.jcis.2011.11.049</a>

Meng, Z.; Liu, H.; Liu, Y.; Zhang, J.; Yu, S.; Cui, F.; Ren, N.; Ma, J. 2011. Preparation and characterization of Pd/Fe bimetallic nanoparticles immobilized in PVDF·Al2O3 membrane for dechlorination of monochloroacetic acid, Journal of Membrane Science 372(1‒2): 165‒171. <a target="_blank" href= "https://doi.org/10.1016/j.memsci.2011.01.064 "> https://doi.org/10.1016/j.memsci.2011.01.064</a>

Mu, Y.; Ai, Z.; Zhang, L.; Song, F. 2015b. Insight into core-shell dependent anoxic Cr(VI) removal with Fe@Fe2O3 nanowires: indispensable role of surface bound Fe(II), ), ACS applied materials & interfaces 7(3): 1997‒2005. <a target="_blank" href= "https://doi.org/10.1021/am507815t "> https://doi.org/10.1021/am507815t</a>

Mu, Y.; Wu, H.; Ai, Z. 2015a. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires, Journal of Hazardous Materials 298: 1‒10. <a target="_blank" href= "https://doi.org/10.1016/j.jhazmat.2015.05.008 "> https://doi.org/10.1016/j.jhazmat.2015.05.008</a>

Oh, S. J.; Kim, N.; Lee, Y. T. 2009. Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement, Journal of Membrane Science 345(1‒2): 13‒20. <a target="_blank" href= "https://doi.org/10.1016/j.memsci.2009.08.003 "> https://doi.org/10.1016/j.memsci.2009.08.003</a>

Qiu, X.; Fang, Z.; Yan, X.; Cheng, W.; Lin, K. 2013. Chemical stability and toxicity of nanoscale zero-valent iron in the remediation of chromium-contaminated watershed, Chemical Engineering Journal 220: 61‒66. <a target="_blank" href= "https://doi.org/10.1016/j.cej.2012.11.041 "> https://doi.org/10.1016/j.cej.2012.11.041</a>

Shen, Y. S.; Wang, S. L.; Huang, S. T.; Tzou, Y. M.; Huang, J. H. 2010. Biosorption of Cr(VI) by coconut coir: spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material, Journal of Hazardous Materials 179(1‒3): 160‒165. <a target="_blank" href= "https://doi.org/10.1016/j.jhazmat.2010.02.073 "> https://doi.org/10.1016/j.jhazmat.2010.02.073</a>

Shih, Y. h.; Hsu, C. y.; Su, Y. f. 2011. Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism, Separation and Purification Technology 76(3): 268‒274. <a target="_blank" href= "https://doi.org/10.1016/j.seppur.2010.10.015 "> https://doi.org/10.1016/j.seppur.2010.10.015</a>

Shu, H. Y.; Chang, M. C.; Chen, C. C.; Chen, P. E. 2010. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution, Journal of Hazardous Materials 184(1‒3): 499‒505. <a target="_blank" href= "https://doi.org/10.1016/j.jhazmat.2010.08.064 "> https://doi.org/10.1016/j.jhazmat.2010.08.064</a>

Shu, H. Y.; Chang, M. C.; Yu, H. H.; Chen, W. H. 2007. Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles, Journal of colloid and interface science 314(1): 89‒97. <a target="_blank" href= "https://doi.org/10.1016/j.jcis.2007.04.071 "> https://doi.org/10.1016/j.jcis.2007.04.071</a>

Wang, X.; Chen, C.; Liu, H.; Ma, J. 2008. Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid, Water Research 42(18): 4656‒4664. <a target="_blank" href= "https://doi.org/10.1016/j.watres.2008.08.005 "> https://doi.org/10.1016/j.watres.2008.08.005</a>

Xia, Z.; Liu, H., Wang, S.; Meng, Z.; Ren, N. 2012. Preparation and dechlorination of a poly(vinylidene difluoride)-grafted acrylic acid film immobilized with Pd/Fe bimetallic nanoparticles for monochloroacetic acid, Chemical Engineering Journal 200‒202: 214‒223. <a target="_blank" href= "https://doi.org/10.1016/j.cej.2012.06.056 "> https://doi.org/10.1016/j.cej.2012.06.056</a>

Xu, L.; Wang, J. 2011. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol, Journal of Hazardous Materials 186(1): 256‒264. <a target="_blank" href= "https://doi.org/10.1016/j.jhazmat.2010.10.116 "> https://doi.org/10.1016/j.jhazmat.2010.10.116</a>

Yang, J.; Wang, X.; Zhu, M.; Liu, H.; Ma, J. 2014. Investigation of PAA/PVDF-NZVI hybrids for metronidazole removal: synthesis, characterization, and reactivity characteristics, Journal of Hazardous Materials 264: 269‒277. <a target="_blank" href= "https://doi.org/10.1016/j.jhazmat.2013.11.037 "> https://doi.org/10.1016/j.jhazmat.2013.11.037</a>

Zaleckas, E.; Paulauskas, V.; Sendžikienė, E. 2013. Fractionation of heavy metals in sewage sludge and their removal using low-molecular-weight organic acids, Journal of Environmental Engineering and Landscape Management 21(3): 189‒198. <a target="_blank" href= "https://doi.org/10.3846/16486897.2012.695734 "> https://doi.org/10.3846/16486897.2012.695734</a>

View article in other formats

CrossMark check

CrossMark logo

Published

2018-03-20

Issue

Section

Articles

How to Cite

Wang, X., & Cong, S. (2018). Preparation method of NZVI-PVDF hybrid films with cation-exchange function for reductive transformation of Cr(VI). Journal of Environmental Engineering and Landscape Management, 26(1), 19-27. https://doi.org/10.3846/16486897.2017.1339048

Share