Possibilities of quantitative assessment of the state of activities of science and technology parks

DOI: https://doi.org/10.3846/btp.2026.24655

Abstract

Science and technology parks (STP) play a special role in the knowledge-based economy. An STP is a place where scientific ideas and thoughts are transformed into products and services. As socio-economic systems, they create a basis for the development of start-ups, knowledge transfer, cooperation between enterprises and scientific institutions and, thus, the commercialization of innovations and other research results. For this reason, the focus of STP functioning is the object of scientific research. On the other hand, there are enough unresolved issues. In most cases, individual aspects of STP activities are upset. There is a lack of research related to the assessment of park activities in a comprehensive, systemic manner. Without a general indicator, it is impossible to compare the activities of individual STPs, it is impossible to study their impact on the performance of enterprises, etc. The aim of the article is to develop a methodology for a comprehensive quantitative assessment of the activities of scientific and technological progress and to test it using the example of parks in Poland.

Keywords:

science and technology parks, multi-criteria assessments of their activities

How to Cite

Trishch, R., Użyński, B., Gedvilaitė, D., Petraškevičius, V., & Shevchenko, I. (2026). Possibilities of quantitative assessment of the state of activities of science and technology parks. Business: Theory and Practice, 27(1), 24–33. https://doi.org/10.3846/btp.2026.24655

Share

Published in Issue
January 13, 2026
Abstract Views
30

References

Albahari, A., Barge-Gil, A., Pérez‐Canto, S., & Modrego, A. (2018). The influence of science and technology park characteristics on firms’ innovation results. Papers in Regional Science, 97(2), 253–280. https://doi.org/10.1111/pirs.12253

Barbera, F., & Fassero, S. (2013). The place-based nature of technological innovation: The case of Sophia Antipolis. Journal of Technology Transfer, 38(3), 216–234. https://doi.org/10.1007/s10961-011-9242-7

Barge-Gil, A., & Modrego, A. (2011). The impact of research and technology organizations on firm competitiveness. Measurement and determinants. The Journal of Technology Transfer, 36, 61–83. https://doi.org/10.1007/s10961-009-9132-4

Błaszczyk, M., Kwieciński, L., Stawicka, M., & Wróblewski, M. (2017). Przedsiębiorstwa w parkach technologicznych a paradygmat gospodarki opartej na wiedzy [Companies active in technology parks and the knowledge-based economy paradigm]. Gospodarka Narodowa, 1, 69–94. https://doi.org/10.33119/GN/100741

Chan, K. F., & Lau, T. (2005). Assessing technology incubator programs in the science park: The good, the bad and the ugly. Technovation, 25(10), 1215–1228. https://doi.org/10.1016/j.technovation.2004.03.010

Cherniak, O., Trishch, R., Ginevičius, R., Nechuiviter, O., & Burdeina, V. (2024). Methodology for assessing the processes of the occupational safety management system using functional dependencies. In M. Nechyporuk, V. Pavlikov, & D. Krytskyi (Eds), Integrated Computer Technologies in Mechanical Engineering – 2023. ICTM 2023. Lecture Notes in Networks and Systems (Vol. 996, pp. 3–13). Springer. https://doi.org/10.1007/978-3-031-60549-9_1

Colombo, M., & Delmastro, M. (2002). How effective are technology incubators? Evidence from Italy. Research Policy, 31(7), 1103–1122. https://doi.org/10.1016/S0048-7333(01)00178-0

Dąbrowska, J. (2011). Measuring the success of science parks: Performance monitoring and evaluation. https://www.pmf.sc.gov.br/arquivos/arquivos/pdf/08_07_2011_16.28.06.346a693b4baaca30ad620164d8186cd.pdf

Demidov, A. S. (2023). Equations of mathematical physics. Springer. https://doi.org/10.1007/978-3-031-30358-6

Diez-Vial, I., & Fernández-Olmos, M. (2017). The effect of science and technology parks on a firm‘s performance: A dynamic approach over time. Journal of Evolutionary Economics, 27, 413–434. https://doi.org/10.1007/s00191-016-0481-5

Dyadyura, K., Slyuz, A., Vysotsky, I. Y., Bubela, T., & Cherniak, O. (2024). Decision support algorithm at the life cycle stages of medical devices based on the application of Markov process. In M. Nechyporuk, V. Pavlikov, & D. Krytskyi (Eds), Integrated Computer Technologies in Mechanical Engineering – 2023 (ICTM 2023). Lecture Notes in Networks and Systems (Vol. 996, pp. 87–97). Springer. https://doi.org/10.1007/978-3-031-60549-9_7

Ersoy, O. (2021). Some new rational approximations to the error function. International Journal for Numerical Methods in Engineering, 10(2), 475–478. https://doi.org/10.1002/nme.1620100219

Fedorovich, O., Lutai, L., Trishch, R., Zabolotnyi, О., Khomiak, E., & Nikitin, A. (2024). Models for reducing the duration and cost of the aviation equipment diagnostics process using the decomposition of the component architecture of a complex product. In E. Faure et al. (Eds), Information Technology for Education, Science, and Technics. ITEST 2024. Lecture Notes on Data Engineering and Communications Technologies (Vol. 221, pp. 108–125). Springer. https://doi.org/10.1007/978-3-031-71801-4_9

Ginevičius, R. (2009). Some problems of quantitative evaluation of the state of social-economic systems. Business: Theory and Practice, 10(2), 69–83. https://doi.org/10.3846/1648-0627.2009.10.69-83

Hołub-Iwan, J., Olczak, A., & Cheba, K. (2012). Benchmarking parków technologicznych w Polsce [Benchmarking of technology parks in Poland]. https://www.parp.gov.pl/storage/publications/pdf/20121203_130930%20benchmarking_parkow_edycja2012.pdf

Hovorov, P., Trishch, R., Ginevičius, R., Petraškevičius, V., & Šuhajda, K. (2025). Assessment of risks of voltage quality decline in load nodes of power systems. Energies, 18(7), Article 1579. https://doi.org/10.3390/en18071579

Howard, R. M. (2022). Arbitrarily accurate analytical approximations for the error function. Mathematical and Computational Applications, 27(1), Article 14. https://doi.org/10.3390/mca27010014

Howard, E. S., & Link, A. N. (2019). An oasis of knowledge: The early history of gateway University Research Park. Journal of the Knowledge Economy, 10(3), 1037–1063. https://doi.org/10.1007/s13132-017-0513-x

Hrinchenko, H., Trishch, R., Burdeina, V., & Chelysheva, S. (2019). Algorithm of technical diagnostics of the complicated damage to the continued resource of the circulation pipeline of the nuclear power plant. Problems of Atomic Science and Technology, 2(120), 104–110. https://doi.org/10.46813/2019-120-104

Hu, M. C. (2011). Evolution of knowledge creation and diffusion: The revisit of Taiwan’s Hsinchu Science Park. Scientometrics, 88(3), 949–977. https://doi.org/10.1007/s11192-011-0427-5

Huang, K. F., Yu, C. M., & Seetoo, D. H. (2012). Firm innovation in policy-driven parks and spontaneous clusters: The smaller firm the better? Journal of Technology Transfer, 37(5), 715–731. https://doi.org/10.1007/s10961-012-9248-9

Khomiak, E., Burdeina, V., Cherniak, O., Olesia, N., & Bubela, T. (2024a). Improving the method of quality control of the fuel element shell in order to improve the safety of a nuclear reactor. In M. Neshyporuk, V. Pavlikov, & D. Krytskyi, Integrated Computer Technologies in Mechanical Engineering – 2023 (ICTM 2023). Lecture Notes in Networks and Systems (Vol. 1008, pp. 351–360). Springer. https://doi.org/10.1007/978-3-031-61415-6_30

Khomiak, E., Trishch, R., Zabolotnyi, O., Cherniak, О., Lutai, L., & Katrich, O. (2024b). Automated mode of improvement of the quality control system for nuclear reactor fuel element shell tightness. In E. Faure et al. (Eds), Information Technology for Education, Science, and Technics. ITEST 2024. Lecture Notes on Data Engineering and Communications Technologies (Vol. 221, pp. 79–91). Springer. https://doi.org/10.1007/978-3-031-71801-4_7

Khomiak, E., Trishch, R., Nazarko, J., Novotný, M., & Petraškevičius, V. (2025). Method of quality control of nuclear reactor element tightness to improve environmental safety. Energies, 18(9), Article 2172. https://doi.org/10.3390/en18092172

Kulke, E. (2008). The technology park Berlin-Adlershof as an example of spatial proximity in regional economic policy. Zeitschrift Fur Wirtschaftsgeographie, 52(4), 193–208. https://doi.org/10.1515/zfw.2008.0015

Kupriyanov, O., Trishch, R., Dichev, D., & Kupriianova, K. (2023). A general approach for tolerance control in quality assessment for technology quality analysis. In V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, & I. Pavlenko (Eds), Advanced Manufacturing Processes IV. InterPartner 2022. Lecture Notes in Mechanical Engineering (pp. 330–339). Springer. https://doi.org/10.1007/978-3-031-16651-8_31

Link, A. N., & Scott, J. T. (2007). The economics of university research parks. Oxford Review of Economic Policy, 23(4), 661–674. https://doi.org/10.1093/oxrep/grm030

Löfsten, H., & Lindelöf, P. (2001). Science parks in Sweden – industrial renewal and development? R&D Management, 31(3), 309–322. https://doi.org/10.1111/1467-9310.00219

Löfsten, H., & Lindelöf, P. (2002). Science parks and the growth of new technology-based firms – academic-industry links, innovation and markets. Research Policy, 31(6), 859–876. https://doi.org/10.1016/S0048-7333(01)00153-6

Marszałek, A. (2018). Parki naukowo-technologiczne jako odpowiedź na pojawiające się wyzwania ekonomiczne [Science and technology parks as a response to emerging economic challenges]. Rozwój Regionalny i Polityka Regionalna, (42), 49–66. https://doi.org/10.14746/rrpr.2018.42.04

Monck, C. S. P., Porter, R. B., Quintas, P., Storey, D. J., & Wynar­czyk, P. (1998). Science parks and the growth of high technology firms. Croom Helm.

Motohashi, K., Chen, J. R., & Yang, C. H. (2009). Are new technology-based firms located on science parks really more innovative? Evidence from Taiwan. Research Policy, 38(1), 77–85. https://doi.org/10.1016/j.respol.2008.09.001

Miao, J. T., & Hall, P. (2014). Optical illusion? The growth and development of the optics valley of China. Environment and Planning C Government and Policy, 32(5), 863–879. https://doi.org/10.1068/c1270r

Oldham, K. B., Myland, J. C., & Spanier, J. (2008). Dawson’s Integral daw(x). In An Atlas of functions. Springer. https://doi.org/10.1007/978-0-387-48807-3_43

Pach, J. (2014). Kierunki oddziaływania Krakowskiego Parku Technologicznego na rozwój województwa małopolskiego [The influence of Krakow Technology Park on the development of Małopolska: an impact study]. Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego, 26, 132–144. https://doi.org/10.24917/20801653.26.9

Palmowski, T., & Tarkowski, M. (2016). Rola parków naukowo-technologicznych w rozwoju lokalnym – przykład Gdyni [The role of science and technology parks in local development – the case of Gdynia]. Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego, 30(2), 142–154. https://doi.org/10.24917/20801653.302.9

Shearmur, R., & Doloreux, D. (2000). Science parks: Actors or reactors? Canadian science parks in their urban context. Environment and Planning A: Economy and Space, 32(6), 1065–1082. https://doi.org/10.1068/a32126

Sofouli, E., & Vonortas, N. S. (2007). S&T parks and business incubators in middle-sized countries: The case of Greece. Journal of Technology Transfer, 32, 525–544. https://doi.org/10.1007/s10961-005-6031-1

Stowarzyszenie Organizatorów Osrodków innowacji I przedsiębiorczości w Polsce. (2022). Raport z badania firm w parkach i inkubatorach technologicznych w Polsce (Raport z badania 2022) [Report on the study of companies in technology parks and incubators in Poland 2022]. Stowarzyszenie Organizatorów Ośrodków Innowacji i Przedsiębiorczości w Polsce, Poznań. https://www.sooipp.org.pl/raport-z-badania-firm-w-parkach-i-inkubatorach-technologicznych-w-polsce-2022

Staszków, M. (2013). Parki naukowo-technologiczne – miejsce wsparcia innowacyjnego biznesu. Prace naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 315, 269–277.

Suzuki, S. (2004). Technopolis: Science parks in Japan. International Journal of Technology Management, 28(3/4/5/6), 582–601. https://doi.org/10.1504/IJTM.2004.005310

Trishch, R., Cherniak, O., Zdenek, D., & Petraskevicius, V. (2024). Assessment of the occupational health and safety management system by qualimetric methods. Engineering Management in Production and Services, 16(2), 118–127. https://doi.org/10.2478/emj-2024-0017

Trishch, R., Maletska, O., Hrinchenko, H., Artiukh, S., Burdeina, V., & Antonenko, N. (2019). Development and validation of measurement techniques according to ISO/IEC 17025:2017. In IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) (pp. 1–6). IEEE. https://doi.org/10.1109/CAOL46282.2019.9019539

Vásquez-Urriago, Á. R., Barge-Gil, A., & Rico, A. M. (2014). The impact of science and technology parks on firms’ product innovation: Empirical evidence from Spain. Journal of Evolutionary Economics, 24, 835–873. https://doi.org/10.1007/s00191-013-0337-1

Vásquez-Urriago, A., Barge-Gil, A., & Modrego, A. (2016). Which firms benefit more from being located in a Science and Technology Park? Empirical evidence for Spain. Research Policy, 45(1), 137–147. https://doi.org/10.1016/j.respol.2015.07.006

Waligóra, K. (2015). Parki naukowe, technologiczne i przemysłowe jako narzędzie wspierające potencjał innowacyjny polskiej gospodark [Science, technology and industrial parks as a tool supporting the innovative potential of the Polish economy]. In E. Gruszewska (Ed.), Współczesne wyzwania rozwoju gospodarczego: polityka i kreacja potencjału: kreacja, innowacyjność, handel zagraniczny (Vol. 1, pp. 171–186). Wydawnictwo Uniwersytetu w Białymstoku.

Yan, M.-R., Yan, H., Zhan, L., Yan, X., & Xu, M. (2020). Evaluation of technological innovations and the industrial ecosystem of science parks in Shanghai: An empirical study. Science, Technology and Society, 25(3), 482–504. https://doi.org/10.1177/0971721820912906

Yang, C. H., Motohashi, K., & Chen, J. R. (2009). Are new technology-based firms located on science parks really more innovative? Evidence from Taiwan. Research Policy, 38(1), 77–85. https://doi.org/10.1016/j.respol.2008.09.001

Zou, Y., & Zhao, W. (2014). Anatomy of Tsinghua University Science Park in China: Institutional evolution and assessment. Journal of Technology Transfer, 39(5), 663–674. https://doi.org/10.1007/s10961-013-9314-y

View article in other formats

CrossMark check

CrossMark logo

Published

2026-01-13

Issue

Section

Articles

How to Cite

Trishch, R., Użyński, B., Gedvilaitė, D., Petraškevičius, V., & Shevchenko, I. (2026). Possibilities of quantitative assessment of the state of activities of science and technology parks. Business: Theory and Practice, 27(1), 24–33. https://doi.org/10.3846/btp.2026.24655

Share