Research on the influence of LPG/CNG injector outlet nozzle diameter on uneven fuel dosage
DOI: https://doi.org/10.3846/16484142.2016.1149884Abstract
The paper presents an original flow research methodology in LPG/CNG injectors. When adapting alternative LPG systems of the IV generation, very often the injector nozzles are adapted individually to change the flow parameters. Hence, in the paper the author attempted to evaluate the influence of the injector nozzle diameter (min and max) on the uneven fuel dosage. The determined average throughputs were 0.0235–3.3683 mm2. The averaged difference in the unevenness reached 0.0419%, its minimum value is 0.0694 and the maximum is 0.7703, which can influence the correction of the mixture composition made through the oxygen sensor. Additionally, the flow characteristics of the injectors for both diameter variants have been presented, showing the necessity of inspecting the component after nozzle boring.
First published online 29 March 2016
Keywords:
combustion engine, fuel supply, alternative power systems, LPG injectors, uneven fuel dosageHow to Cite
Share
License
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Czaban, J.; Szpica, D. 2010. The assessment of external and operating indexes of LPG fueled engines, Combustion Engines 3: 68–75.
Gumus, M. 2011. Effects of volumetric efficiency on the performance and emissions characteristics of a dual fueled (gasoline and LPG) spark ignition engine, Fuel Processing Technology 92(10): 1862–1867. <a target="_blank" href= "http://dx.doi.org/10.1016/j.fuproc.2011.05.001"> http://dx.doi.org/10.1016/j.fuproc.2011.05.001</a>
Iwaszko, J. 1998. Wymiana ciepła podczas opróżniania zbiornika, Zeszyty Naukowe Politechniki Łódzkiej – Cieplne Maszyny Przepływowe 93: 12–21 (in Polish).
Kim, J.; Choi, K.; Myung, C.-L.; Park, S. 2013. Experimental evaluation of engine control strategy on the time resolved THC and nano-particle emission characteristics of liquid phase LPG direct injection (LPG-DI) engine during the cold start, Fuel Processing Technology 106: 166–173. <a target="_blank" href= "http://dx.doi.org/10.1016/j.fuproc.2012.07.020"> http://dx.doi.org/10.1016/j.fuproc.2012.07.020</a>
Kushari, A. 2010. Effect of injector geometry on the performance of an internally mixed liquid atomizer, Fuel Processing Technology 91(11): 1650–1654. <a target="_blank" href= "http://dx.doi.org/10.1016/j.fuproc.2010.06.014"> http://dx.doi.org/10.1016/j.fuproc.2010.06.014</a>
Lagarias, J. C.; Reeds, J. A.; Wright, M. H.; Wright, P. E. 1998. Convergence Properties of the Nelder–Mead simplex method in low dimensions, SIAM Journal on Optimization 9(1): 112–147. <a target="_blank" href= "http://dx.doi.org/10.1137/S1052623496303470"> http://dx.doi.org/10.1137/S1052623496303470</a>
Majerczyk, A.; Radzimirski, S. 2012. Effect of LPG gas fuel injectors on the properties of flow emission vehicles, Journal of KONES Powertrain and Transport 19(4): 401–410.
MathWorks. 2015. MATLAB® & SIMULINK®: Simulink® User’s Guide. 3480 p. Available from Internet: <a target="_blank" href= "http://www.math-works.com/help/pdf_doc/simulink/sl_using.pdf">http://www.math-works.com/help/pdf_doc/simulink/sl_using.pdf</a>
Metlyuk, N. F.; Avtushko, V. P. 1980. Dinamika pnevmati-cheskih i gidravlicheskih privodov avtomobilej. Mashinostroenie. 231 s. (in Russian).
Müller, H. 1967a. Ursachen und Umfang der ungleichen Gemischverteilung an Mehrzylinder Ottomotoren, MTZ 28(9): 335–339. (in German).
Müller, H. 1967b. Gemischbildung und Gemischverteilung bei Ottomotoren mit Vergaserbetriebe, MTZ 28(8): 313–319. (in German).
Oliveira Panão, M. R.; Moreira, A. L. N.; Durão, D. F. G. 2013. Statistical analysis of spray impact to assess fuel mixture preparation in IC engines, Fuel Processing Technology 107: 64–70. <a target="_blank" href= "http://dx.doi.org/10.1016/j.fuproc.2012.07.022"> http://dx.doi.org/10.1016/j.fuproc.2012.07.022</a>
Park, K. 2005. Behavior of liquid LPG spray injecting from a single hole nozzle, International Journal of Automotive Technology 6(3): 215–219.
Rawski, F. 1980. Rozdział powietrza pomiędzy cylindry silnika wielocylindrowego, Silniki Spalinowe 3–4: 45–52. (in Polish).
Robart, D.; Breuer, S.; Reckers, W.; Kneer, R. 2001. Assessment of pulsed gasoline fuel sprays by means of qualitative and quantitative laser-based diagnostic methods, Particle & Particle Systems Characterization 18(4): 179–189.
Senda, J.; Yamaguchi, M.; Tsukamoto T.; Fujimoto, H. 1994. Characteristics of spray injected from gasoline injector, JSME International Journal – Series B: Fluids and Thermal Engineering 37(4): 931–936.
Shampine, L. F.; Reichelt, M. W. 1997. The MATLAB ODE suite, SIAM Journal on Scientific Computing 18(1): 1–22. <a target="_blank" href= "http://dx.doi.org/10.1137/S1064827594276424"> http://dx.doi.org/10.1137/S1064827594276424</a>
Sim, H.; Lee, K.; Chung, N.; Sunwoo, M. 2005. A study on the injection characteristics of a liquid-phase liquefied petroleum gas injector for air-fuel ratio control, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219(8): 1037–1046. <a target="_blank" href= "http://dx.doi.org/10.1243/095440705X34621"> http://dx.doi.org/10.1243/095440705X34621</a>
Sim, H.; Lee, K.; Chung, N.; Sunwoo, M. 2004. Experimental analysis of a liquid-phase liquefied petroleum gas injector for a heavy-duty engine, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 218(7): 719–727. <a target="_blank" href= "http://dx.doi.org/10.1243/0954407041580058"> http://dx.doi.org/10.1243/0954407041580058</a>
Smith, S. T. 2006. MATLAB Advanced GUI Development. Dog Ear Publishing. 324 p.
Szpica, D. 2008. The assessment of the influence of temperature differences in individual ducts of an intake manifold on the unevenness of air filling in a cylinder of a combustion engine, Combustion Engines (2): 44–53.
Szpica, D. 2013. Wyznaczanie nierównomierności dawkowania wtryskiwaczy LPG, Combustion Engines (3): 647–650. (in Polish).
Szpica, D. 2011. Stanowisko do wyznaczania charakterystyk przepływowych wtryskiwaczy LPG, Przegląd Mechaniczny 7–8: 17–22. (in Polish).
Szpica, D.; Czaban, J. 2014. Operational assessment of selected gasoline and LPG vapour injector dosage regularity, Mechanika 20(5): 480–488. <a target="_blank" href= "http://dx.doi.org/10.5755/j01.mech.20.5.7780"> http://dx.doi.org/10.5755/j01.mech.20.5.7780</a>
Szpica, D.; Czaban, J. 2009. Propozycja przyrządu do kontroli równomierności dawkowania wtryskiwaczy LPG, Pneumatyka 4: 38–43. (in Polish).
Tichy, M. 1994. Laufunruhe als Eingangsgröße für ein adaptives System der Mischungsverhältnisregelung von Ottomotoren. Slovak Technical University, Bratislava. (in German).
Yang, W. Y.; Cao, W.; Chung, T.-S.; Morris, J. 2005. Applied Numerical Methods Using MATLAB. Wiley-Interscience. 528 p.
Yeom, K.; Park, Ju.; Bae, C.; Park, Je.; Kim, S. 2009. Anti-vapor lock of a top-feed injector for a liquefied petroleum gas liquid-phase injection engine, Energy & Fuels 23(2): 876–883. <a target="_blank" href= "http://dx.doi.org/10.1021/ef800849e"> http://dx.doi.org/10.1021/ef800849e</a>
Zimmerman, A. A.; Furlong, L. E.; Shannon, H. F. 1972. Improved fuel distribution – a new role for gasoline additives, SAE Technical Paper 720082. <a target="_blank" href= "http://dx.doi.org/10.4271/720082"> http://dx.doi.org/10.4271/720082</a>
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.