Share:


Multiobjective approach to portfolio optimization in the light of the credibility theory

    Fernando Garcia   Affiliation
    ; Jairo González-Bueno   Affiliation
    ; Francisco Guijarro   Affiliation
    ; Javier Oliver   Affiliation
    ; Rima Tamošiūnienė   Affiliation

Abstract

The present research proposes a novel methodology to solve the problems faced by investors who take into consideration different investment criteria in a fuzzy context. The approach extends the stochastic mean-variance model to a fuzzy multiobjective model where liquidity is considered to quantify portfolio’s performance, apart from the usual metrics like return and risk. The uncertainty of the future returns and the future liquidity of the potential assets are modelled employing trapezoidal fuzzy numbers. The decision process of the proposed approach considers that portfolio selection is a multidimensional issue and also some realistic constraints applied by investors. Particularly, this approach optimizes the expected return, the risk and the expected liquidity of the portfolio, considering bound constraints and cardinality restrictions. As a result, an optimization problem for the constraint portfolio appears, which is solved by means of the NSGA-II algorithm. This study defines the credibilistic Sortino ratio and the credibilistic STARR ratio for selecting the optimal portfolio. An empirical study on the S&P100 index is included to show the performance of the model in practical applications. The results obtained demonstrate that the novel approach can beat the index in terms of return and risk in the analyzed period, from 2008 until 2018.


First published online 8 October 2020

Keyword : evolutionary multiobjective optimization, fuzzy portfolio selection, mean-CVaR-liquidity, mean-semivariance-liquidity, trapezoidal fuzzy numbers, NSGA-II, credibilistic sortino ratio, credibilistic STARR ratio

How to Cite
Garcia, F., González-Bueno, J., Guijarro, F., Oliver, J., & Tamošiūnienė, R. (2020). Multiobjective approach to portfolio optimization in the light of the credibility theory. Technological and Economic Development of Economy, 26(6), 1165-1186. https://doi.org/10.3846/tede.2020.13189
Published in Issue
Nov 17, 2020
Abstract Views
1537
PDF Downloads
1048
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), 1487–1503. https://doi.org/10.1016/S0378-4266(02)00283-2

Ahmed, A., Ali, R., Ejaz, A., & Ahmad, M. I. (2018). Sectoral integration and investment diversification opportunities: Evidence from Colombo Stock Exchange. Entrepreneurship and Sustainability Issues, 5(3), 514–527. https://doi.org/10.9770/jesi.2018.5.3(8)

Arenas-Parra, M., Bilbao-Terol, A., & Rodríguez-Uría, M. V. (2001). A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 133(2), 287–297. https://doi.org/10.1016/S0377-2217(00)00298-8

Arribas, I., Espinós-Vañó, M. D., García, F., & Tamosiuniene, R. (2019). Negative screening and sustainable portfolio diversification. Entrepreneurship and Sustainability Issues, 6(4), 1566–1586. https://doi.org/10.9770/jesi.2019.6.4(2)

Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228. https://doi.org/10.1111/1467-9965.00068

Bai, X.-J., & Liu, Y.-K. (2015). CVaR reduced fuzzy variables and their second order moments. University of Sistan and Baluchestan, 12(5), 45–75. https://doi.org/10.22111/IJFS.2015.2111

Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2(1), 95–121. https://doi.org/10.1016/0304-405X(75)90025-2

Bermúdez, J. D., Segura, J. V., & Vercher, E. (2012). A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets and Systems, 188(1), 16–26. https://doi.org/10.1016/j.fss.2011.05.013

Bezoui, M., Moulaï, M., Bounceur, A., & Euler, R. (2019). An iterative method for solving a bi-objective constrained portfolio optimization problem. Computational Optimization and Applications, 72(2), 479–498. https://doi.org/10.1007/s10589-018-0052-9

Bi, T., Zhang, B., & Wu, H. (2013). Measuring downside risk using high-frequency data: Realized downside risk measure. Communications in Statistics – Simulation and Computation, 42(4), 741–754. https://doi.org/10.1080/03610918.2012.655826

Carlsson, C., Fullér, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems, 131(1), 13–21. https://doi.org/10.1016/S0165-0114(01)00251-2

Chen, W., & Xu, W. (2019). A hybrid multiobjective bat algorithm for fuzzy portfolio optimization with real-world constraints. International Journal of Fuzzy Systems, 21(1), 291–307. https://doi.org/10.1007/s40815-018-0533-0

Choobineh, F., & Branting, D. (1986). A simple approximation for semivariance. European Journal of Operational Research, 27(3), 364–370. https://doi.org/10.1016/0377-2217(86)90332-2

Deb, K., Agrawal, K., Pratap, A., & Meyarivan, T. (2002). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017

Fang, Y., Lai, K. K., & Wang, S. Y. (2006). Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research, 175(2), 879–893. https://doi.org/10.1016/J.EJOR.2005.05.020

Favre, L., & Galeano, J. (2002). Mean-modified Value at Risk optimization with hedge funds. Journal of Alternative Investments, 5, 21–25. https://doi.org/10.3905/jai.2002.319052

Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns. The American Economic Review, 67(2), 116–126.

García, F., González-Bueno, J., Guijarro, F., & Oliver, J. (2020). Forecasting the environmental, social, and governance rating of firms by using corporate financial performance variables: A rough set approach. Sustainability, 12(8), 3324. https://doi.org/10.3390/su12083324

García, F., González-Bueno, J., Oliver, J., & Riley, N. (2019a). Selecting socially responsible portfolios: A fuzzy multicriteria approach. Sustainability, 11(9), 2496. https://doi.org/10.3390/su11092496

García, F., González-Bueno, J., Oliver, J., & Tamošiūnienė, R. (2019b). A credibilistic mean-semivariance-PER portfolio selection model for Latin America. Journal of Business Economics and Management, 20(2), 225–243. https://doi.org/10.3846/jbem.2019.8317

García, F., Guijarro, F., & Moya, I. (2013). A multiobjective model for passive portfolio management: an application on the S&P100 index. Journal of Business Economics and Management, 14(4), 758–775. https://doi.org/10.3846/16111699.2012.668859

García, F., Guijarro, F., & Oliver, J. (2018a). Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics. Neural Computing and Applications, 30, 2625–2641. https://doi.org/10.1007/s00521-017-2882-2

García, F., Guijarro, F., Oliver, J., & Tamošiūnienė, R. (2018b). Hybrid fuzzy neural network to predict price direction in the german DAX-30 index. Technological and Economic Development of Economy, 24(6), 2161–2178. https://doi.org/10.3846/tede.2018.6394

Goel, A., Sharma, A., & Mehra, A. (2018). Index tracking and enhanced indexing using mixed conditional value-at-risk. Journal of Computational and Applied Mathematics, 335, 361–380. https://doi.org/10.1016/j.cam.2017.12.015

González-Bueno, J. (2019). Optimización multiobjetivo para la selección de carteras a la luz de la teoría de la credibilidad. Una aplicación en el mercado integrado latinoamericano. Editorial Universidad Pontificia Bolivariana.

Gupta, P., Inuiguchi, M., & Mehlawat, M. K. (2011). A hybrid approach for constructing suitable and optimal portfolios. Expert Systems with Applications, 38(5), 5620–5632. https://doi.org/10.1016/j.eswa.2010.10.073

Gupta, P., Inuiguchi, M., Mehlawat, M. K., & Mittal, G. (2013a). Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Information Sciences, 229, 1–17. https://doi.org/10.1016/j.ins.2012.12.011

Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014a). Portfolio optimization using credibility theory. In fuzzy portfolio optimization. Studies in Fuzziness and Soft Computing (Vol. 316, pp. 127–160). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-54652-5_5

Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014b). Portfolio optimization with interval coefficients. In Fuzzy portfolio optimization. Studies in Fuzziness and Soft Computing (Vol. 316, pp. 33–59). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54652-5_2

Gupta, P., Mehlawat, M. K., Kumar, A., Yadav, S., & Aggarwal, A. (2020a). A credibilistic fuzzy DEA approach for portfolio efficiency evaluation and rebalancing toward benchmark portfolios using positive and negative returns. International Journal of Fuzzy Systems, 22(3), 824–843. https://doi.org/10.1007/s40815-020-00801-4

Gupta, P., Mehlawat, M. K., & Saxena, A. (2010). A hybrid approach to asset allocation with simultaneous consideration of suitability and optimality. Information Sciences, 180(11), 2264–2285. https://doi.org/10.1016/J.INS.2010.02.007

Gupta, P., Mehlawat, M. K., Yadav, S., & Kumar, A. (2020b). Intuitionistic fuzzy optimistic and pessimistic multi-period portfolio optimization models. Soft Computing, 24, 11931–11956. https://doi.org/10.1007/s00500-019-04639-3

Gupta, P., Mittal, G., & Mehlawat, M. K. (2013b). Expected value multiobjective portfolio rebalancing model with fuzzy parameters. Insurance: Mathematics and Economics, 52(2), 190–203. https://doi.org/10.1016/j.insmatheco.2012.12.002

Heidari-Fathian, H., & Davari-Ardakani, H. (2020). Bi-objective optimization of a project selection and adjustment problem under risk controls. Journal of Modelling in Management, 15(1), 89–111. https://doi.org/10.1108/JM2-07-2018-0106

Hilkevics, S., & Semakina, V. (2019). The classification and comparison of business ratios analysis methods. Insights into Regional Development, 1(1), 48–57. https://doi.org/10.9770/ird.2019.1.1(4)

Huang, X. (2006). Fuzzy chance-constrained portfolio selection. Applied Mathematics and Computation, 177(2), 500–507. https://doi.org/10.1016/j.amc.2005.11.027

Huang, X. (2008). Mean-semivariance models for fuzzy portfolio selection. Journal of Computational and Applied Mathematics, 217(1), 1–8. https://doi.org/10.1016/j.cam.2007.06.009

Huang, X. (2009). A review of credibilistic portfolio selection. Fuzzy Optimization and Decision Making, 8(3), 263–281. https://doi.org/10.1007/s10700-009-9064-3

Huang, X. (2010). Portfolio analysis, from probabilistic to credibilistic and uncertain approaches (Vol. 250). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-11214-0

Huang, X. (2017). A review of uncertain portfolio selection. Journal of Intelligent and Fuzzy Systems, 32(6), 4453–4465. https://doi.org/10.3233/JIFS-169211

Huang, X., & Di, H. (2016). Uncertain portfolio selection with background risk. Applied Mathematics and Computation, 276, 284–296. https://doi.org/10.1016/j.amc.2015.12.018

Huang, X., & Wang, X. (2019). International portfolio optimization based on uncertainty theory. Optimization. https://doi.org/10.1080/02331934.2019.1705821

Huang, X., & Yang, T. (2020). How does background risk affect portfolio choice: An analysis based on uncertain mean-variance model with background risk. Journal of Banking and Finance, 111, 105726. https://doi.org/10.1016/j.jbankfin.2019.105726

Jalota, H., Thakur, M., & Mittal, G. (2017a). Modelling and constructing membership function for uncertain portfolio parameters: A credibilistic framework. Expert Systems with Applications, 71, 40–56. https://doi.org/10.1016/j.eswa.2016.11.014

Jalota, H., Thakur, M., & Mittal, G. (2017b). A credibilistic decision support system for portfolio optimization. Applied Soft Computing, 59, 512–528. https://doi.org/10.1016/j.asoc.2017.05.054

Kaplan, P. D., & Alldredge, R. H. (1997). Semivariance in risk-based index construction. The Journal of Investing, 6(2), 82–87. https://doi.org/10.3905/joi.1997.408419

Keating, C., & Shadwick, W. F. (2002). A universal performance measure. Journal of Performance Measurement, 6(3), 59–84.

Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Science, 37(5), 519–531. https://doi.org/10.1287/mnsc.37.5.519

Li, B., Zhu, Y., Sun, Y., Aw, G., & Teo, K. L. (2018). Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Applied Mathematical Modelling, 56, 539–550. https://doi.org/10.1016/J.APM.2017.12.016

Li, H. Q., & Yi, Z. H. (2019). Portfolio selection with coherent Investor’s expectations under uncertainty. Expert Systems with Applications, 133, 49–58. https://doi.org/10.1016/j.eswa.2019.05.008

Li, X., & Qin, Z. (2014). Interval portfolio selection models within the framework of uncertainty theory. Economic Modelling, 41, 338–344. https://doi.org/10.1016/j.econmod.2014.05.036

Liagkouras, K., & Metaxiotis, K. (2015). Efficient portfolio construction with the use of multiobjective evolutionary algorithms: Best practices and performance metrics. International Journal of Information Technology & Decision Making, 14(03), 535–564. https://doi.org/10.1142/S0219622015300013

Liu, B. (2004). Uncertainty theory: an introduction to its axiomatic foundations (Vol. 154). SpringerVerlag Berlin Heidelberg.

Liu, B. (2007). Uncertainty theory an introduction to its axiomatic foundations (2nd ed.). Springer-Verlag Berlin Heidelberg.

Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445–450. https://doi.org/10.1109/TFUZZ.2002.800692

Liu, N., Chen, Y., & Liu, Y. (2018). Optimizing portfolio selection problems under credibilistic CVaR criterion. Journal of Intelligent and Fuzzy Systems, 34(1), 335–347. https://doi.org/10.3233/JIFS-171298

Liu, Y. J., & Zhang, W. G. (2018). Multiperiod fuzzy portfolio selection optimization model based on possibility theory. International Journal of Information Technology and Decision Making, 17(3), 941–968. https://doi.org/10.1142/S0219622018500190

Mansour, N., Cherif, M. S., & Abdelfattah, W. (2019). Multi-objective imprecise programming for financial portfolio selection with fuzzy returns. Expert Systems with Applications, 138, 112810. https://doi.org/10.1016/j.eswa.2019.07.027

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Markowitz, H. (1959). Portfolio selection: efficient diversification of investments. Jhon Wiley & Sons, Inc.

Markowitz, H., Todd, P., Xu, G., & Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the Critical Line Algorithm. Annals of Operations Research, 45(1), 307–317. https://doi.org/10.1007/BF02282055

Martin, R., Rachev, S., & Siboulet, F. (2003). Phi-alpha optimal portfolios and extreme risk management. The Best of Wilmott 1: Incorporating the Quantitative Finance Review, 1, 223–248. https://doi.org/10.1002/wilm.42820030619

Mehlawat, M. K. (2016). Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels. Information Sciences, 345, 9–26. https://doi.org/10.1016/j.ins.2016.01.042

Mehlawat, M. K., Gupta, P., Kumar, A., Yadav, S., & Aggarwal, A. (2020). Multi-objective fuzzy portfolio performance evaluation using data envelopment analysis under credibilistic framework. IEEE Transactions on Fuzzy Systems, 1–1. https://doi.org/10.1109/tfuzz.2020.2969406

Mehralizade, R., Amini, M., Sadeghpour Gildeh, B., & Ahmadzade, H. (2020). Uncertain random portfolio selection based on risk curve. Soft Computing, 24, 13331–13345. https://doi.org/10.1007/s00500-020-04751-9

Moeini, M. (2019). Solving the index tracking problem: a continuous optimization approach. Central European Journal of Operations Research, 1–29. https://doi.org/10.1007/s10100-019-00633-0

Morgan, J. P. (1996). Riskmetrics technical document (4th ed.). Morgan Guaranty Trust Company of New York.

Narkunienė, J., & Ulbinaitė, A. (2018). Comparative analysis of company performance evaluation methods. Entrepreneurship and Sustainability Issues, 6(1), 125–138. https://doi.org/10.9770/jesi.2018.6.1(10)

Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249–258. https://doi.org/10.1007/s12540-009-0249-7

Pflug, G. C. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In S. P. Uryasev (Ed.), Probabilistic constrained optimization. nonconvex optimization and its applications (Vol. 49, pp. 272–281). Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3150-7_15

Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2(3), 21–41. https://doi.org/10.21314/JOR.2000.038

Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443–1471. https://doi.org/10.1016/S0378-4266(02)00271-6

Rubio, A., Bermúdez, J. D., & Vercher, E. (2016). Forecasting portfolio returns using weighted fuzzy time series methods. International Journal of Approximate Reasoning, 75, 1–12. https://doi.org/10.1016/J.IJAR.2016.03.007

Saborido, R., Ruiz, A. B., Bermúdez, J. D., Vercher, E., & Luque, M. (2016). Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Applied Soft Computing, 39, 48–63. https://doi.org/10.1016/j.asoc.2015.11.005

Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business, 39(1), 119–138. https://doi.org/10.1086/294846

Sharpe, W. F. (1994). The sharpe ratio. The Journal of Portfolio Management, 21(1), 49–58. https://doi.org/10.3905/jpm.1994.409501

Sortino, F. A., & Price, L. N. (1994). Performance measurement in a downside risk framework. The Journal of Investing, 3(3), 59–64. https://doi.org/10.3905/joi.3.3.59

Speranza, M. (1993). Linear programming models for portfolio optimization. Finance, 14, 107–123.

Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221–248. https://doi.org/10.1162/evco.1994.2.3.221

Treynor, J. L. (1965). How to rate management of investment funds. Harvard Business Review, 1, 63–75.

Vercher, E., & Bermúdez, J. D. (2012). Fuzzy portfolio selection models: A numerical study. In M. Doumpos, C. Zopounidis, & P. M. Pardalos (Eds.), Financial decision making using computational intelligence. Springer optimization and its applications (Vol. 70, pp. 253–280). Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3773-4_10

Vercher, E., & Bermúdez, J. D. (2013). A possibilistic mean-downside risk-skewness model for efficient portfolio selection. IEEE Transactions on Fuzzy Systems, 21(3), 585–595. https://doi.org/10.1109/TFUZZ.2012.2227487

Vercher, E., & Bermúdez, J. D. (2015). Portfolio optimization using a credibility mean-absolute semideviation model. Expert Systems with Applications, 42(20), 7121–7131. https://doi.org/10.1016/j.eswa.2015.05.020

Vercher, E., Bermúdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158(7), 769–782. https://doi.org/10.1016/j.fss.2006.10.026

Wang, S., & Zhu, S. (2002). On fuzzy portfolio selection problems. Fuzzy Optimization and Decision Making, 1(4), 361–377. https://doi.org/10.1023/A:1020907229361

Yue, W., & Wang, Y. (2017). A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios. Physica A: Statistical Mechanics and Its Applications, 465, 124–140. https://doi.org/10.1016/j.physa.2016.08.009

Yue, W., Wang, Y., & Xuan, H. (2019). Fuzzy multi-objective portfolio model based on semi-variance– semi-absolute deviation risk measures. Soft Computing, 23(17), 8159–8179. https://doi.org/10.1007/s00500-018-3452-y

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

Zhai, J., & Bai, M. (2018). Mean-risk model for uncertain portfolio selection with background risk. Journal of Computational and Applied Mathematics, 330, 59–69. https://doi.org/10.1016/j.cam.2017.07.038

Zhao, Z., Wang, H., Yang, X., & Xu, F. (2020). CVaR-cardinality enhanced indexation optimization with tunable short-selling constraints. Applied Economics Letters, 1–7. https://doi.org/10.1080/13504851.2020.1740156