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Introduction 

Investors may apply different strategies to allocate their wealth in the stock markets. One 
option is to cherry pick the companies they want to invest in. In this case, they can individu-
ally select the companies performing fundamental analysis (Hilkevics & Semakina, 2019; 
Narkunienė & Ulbinaitė, 2018) and controlling for the proper diversification (Ahmed et al., 
2018; Arribas et al., 2019) or apply technical analysis (García et al., 2018b). Another option is 
to directly manage a portfolio of companies. In this case, the selection of the companies to be 
included in the portfolio is done simultaneously. When investors opt for a passive portfolio 
management, passive investment strategies are implemented (García et al., 2018a; Moeini, 
2019). Investors preferring to adopt an active role and expecting to beat the market use other 
portfolio selection strategies (García et al., 2013, 2020, 2019a; Goel et al., 2018).

Portfolio selection has attracted the attention of researchers and practitioners during the 
last decades and is still a developing topic. The main issue to be solved is the investment of 
cash in the various financial assets available in the market. The principal objective is to mini-
mize the risk of terminal wealth while the expected terminal wealth equals a prescribed level. 
The first breakthrough work on this topic was the seminal mean-variance model presented 
by Markowitz (1952). In this classical work, Markowitz used the mathematical expectation 
of the return obtained by the portfolio and the variance of the portfolio as return and risk 
measures, respectively. Since the proposal by Markowitz, portfolio theory has evolved to solve 
some drawbacks of the original model. Most of the research has dealt with problems such as 
the measurement of return and risk, the introduction of new criteria and realistic constraints, 
and the selection of specific portfolios on the efficient frontier.

In most studies, asset returns are assumed to be a random variable, and most portfolio 
selection models assume that the performance of the assets in the future can be calculated 
correctly using the performance they had in the past. However, as stock markets are affected 
by an enormous number of factors, there are more uncertainty types other than randomness 
in the actual markets. To solve this issue, Zadeh introduced the fuzzy set theory (Zadeh, 
1965) in order to capture and model the portfolio investment. A vast number of studies have 
assumed the fuzziness of returns and have utilize possibility measures to select the assets to 
be included in the investment portfolio (Carlsson et al., 2002; Gupta et al., 2020b; Y. J. Liu 
& Zhang, 2018; Mansour et al., 2019; Vercher et al., 2007; Vercher & Bermúdez, 2012; Wang 
& Zhu, 2002). Possibility measures are widely used, but they are not self-dual. Liu and Liu 
(2002) proposed as an alternative a credibility measure which is self-dual in order to solve the 
problems incurred by the possibility measure. Since then, some researchers suggest modeling 
assets return using credibility measures (García et al., 2013; González-Bueno, 2019; Gupta  
et al., 2020a; Huang, 2006, 2009; Mehlawat, 2016; Vercher & Bermúdez, 2015). The credibility 
measure is consistent with the law of excluded middle and the law of contradiction (i.e., they 
have the self-duality property) (Huang, 2010), which is required in theory and demanded 
by practitioners. In the last years, researchers have devoted attention to uncertain portfolio 
selection based on the uncertainty theory, which is an extension of the credibility theory 
(Huang, 2017; Huang & Di, 2016; Huang & Wang, 2019; Huang & Yang, 2020; Mehralizade 
et al., 2020; Zhai & Bai, 2018). 
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Risk measurement has been improved, as well. When portfolio returns are typically asym-
metric, the variance is not an adequate option to quantify risk, because it considers high 
positive returns desired by investors as a risky evolution of the portfolio. This is not correct, 
as only negative returns are associated to risk by investors (X. Li & Qin, 2014). In other 
words, the variance penalizes extreme deviations from the expected return, regardless the 
sign (positive or negative) of the deviations (Gupta et al., 2013b). To approach this issue, a 
number of downside risk measures (i.e. measures that only take into account undesirable 
low returns compared to the expected return level) have been proposed: semivariance (Mar-
kowitz, 1959), lower partial moment (Bawa, 1975; Fishburn, 1977), semi-absolute deviation 
(Speranza, 1993), value at risk (VaR) (Morgan, 1996), and conditional value at risk (CVaR) 
(Rockafellar & Uryasev, 2000, 2002). Among those risk measures, semivariance and CVaR 
are the most commonly accepted downside risk measures. Semivariance and CVaR separate 
negative downside deviations of returns from the positive deviations which are welcome by 
investors and just consider on those returns which fall below a specific level (Huang, 2008). 
As a result, they are more appropriate to reflect investors’ concern about downside losses (Bi 
et al., 2013). Experimental studies have shown the merits of semivariance and CVaR in mea-
suring portfolio risk in both random (Acerbi & Tasche, 2002; Artzner et al., 1999; Choobineh 
& Branting, 1986; Kaplan & Alldredge, 1997; Markowitz et al., 1993; Pflug, 2000; Zhao et al., 
2020) and fuzzy (Bai & Liu, 2015; Chen & Xu, 2019; García et al., 2019b; Gupta et al., 2020a; 
Huang, 2008; Jalota et al., 2017a, 2017b) environments.

In the traditional portfolio selection model, investor choices are governed by two ba-
sic criteria: return and risk (Bezoui et al., 2019; Heidari-Fathian & Davari-Ardakani, 2020; 
Konno & Yamazaki, 1991; B. Li et al., 2018; Markowitz, 1952; Speranza, 1993). Nevertheless, 
it is important to consider more criteria apart from return and risk which are also valuable 
for investors, and are considered by them in their actual portfolio selection process. By taking 
into account additional criteria in the selection process, it may occur that the new portfolios 
are, on the one hand, not as profitable or more risky but, on the other hand, beat the old port-
folios regarding other important aspects for investors, such as liquidity (Gupta et al., 2013a). 

Together with return and risk, one of the fundamental criteria employed by actual inves-
tors to build their portfolios is liquidity. Several previous studies on portfolio decision-mak-
ing have included liquidity as a fuzzy variable (Arenas-Parra et al., 2001; Gupta et al., 2010, 
2011; Jalota et al., 2017a, 2017b; Mansour et al., 2019; Yue et al., 2019). Generally, investors’ 
preference is to own portfolios that contain liquid assets which can be easily liquidated in 
the future. Consequently, in our research we will include liquidity in the decision-making 
approach, together with return and risk, in order to make the mean-semivariance model 
more realistic and usable in a real situation.

An important aspect to consider in fuzzy portfolio optimization is the shape of the mem-
bership functions, so that the functions can properly represent the historical performance of 
the stocks. For the purpose of addressing this issue, some papers model the risk associated 
with future returns applying trapezoidal fuzzy numbers (Gupta et al., 2013a, 2013b; H. Q. Li 
& Yi, 2019; N. Liu et al., 2018; Mehlawat et al., 2020; Rubio et al., 2016; Vercher et al., 2007). 
These kind of fuzzy variables will allow to analyze not only the expected return, but also the 
risk associated with of a specific asset or portfolio (Rubio et al., 2016). In addition, the use 
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of trapezoidal fuzzy variables is widespread to approach different issues as they are easy to 
calculate (Gupta et al., 2014a). Due to the above considerations, in this study we model the 
uncertainty of both the future returns and the liquidity of the potential stocks to be included 
in the portfolio by means of trapezoidal fuzzy numbers.

The mean-variance model by Markowitz generates an efficient frontier composed by 
many different portfolios. But, in fact, this solution does not solve the demands by investors, 
as they still have to choose one specific portfolio on the efficient frontier. Following Sharpe 
(1966) an option to select one specific portfolio is choosing the one which maximizes the 
risk-adjusted returns. Since Sharp, many portfolio risk measures have been proposed, for 
example the Treynor ratio (Treynor, 1965), the Sharpe ratio (Sharpe, 1994), the Sortino ratio 
(Sortino & Price, 1994), the Omega ratio (Keating & Shadwick, 2002), the VaR ratio (Favre 
& Galeano, 2002; Martin et al., 2003) or the STARR ratio (Martin et al., 2003). 

In this article, we suggest the use of a credibilistic multiobjective model, where return, 
risk and liquidity are considered to quantify portfolio performance. Both return and liquidity 
are included in the model as trapezoidal fuzzy numbers. In the decision-making process this 
approach considers a number of realistic constraints required by investors. Specifically, the 
expected return, the semivariance or CVaR and the expected liquidity of the portfolios are 
optimized while including in the model budget, bound and cardinality constraints. These re-
alistic constraints included in the model convert the problem into a NP-hard problem which 
cannot be solved by means of traditional methods of optimization. To solve this concern, 
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed. In order to select 
specific portfolios, the credibilistic Sortino ratio and the credibilistic STARR ratio are defined. 
Finally, the proposed approach is used employing actual data of the stock exchange to show 
its efficiency and that it can actually be used by practitioners.

The remainder of the article is structured as follows: The first section introduces some 
core definitions and notations regarding trapezoidal fuzzy numbers and the credibility theo-
ry. Section 2 describes the multiobjective credibilistic return-risk-liquidity portfolio selection 
model. Section 3 presents the solution methodology used to figure out the above model with 
the NSGA-II algorithm. Section 4 illustrates our proposal with an empirical study. The main 
conclusions of the paper are presented in last Section.

1. Credibility theory

The credibility theory, was first introduced by Liu (2004) and then further developed by Liu 
(2007). This theory deals with the study fuzzy phenomena. Hereunder we recall the basic 
definitions and notations that will be used in the paper.
Definition 1. Credibility measure (B. Liu & Liu, 2002). Let ξ be a fuzzy variable with mem-
bership function mξ, and x a real number. Then for any fuzzy event (characterized by ξ ≤ 
x) the credibility measure is defined by Eq. (1):

 { } ( ) ( )
y  x y > x

1Cr   x  = sup y  +1 sup y ,    x  R
2 ξ ξ

≤

 
ξ≤ m − m ∀ ∈  

 
.
 

(1)
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Definition 2. Trapezoidal fuzzy number. A fuzzy number d is called a trapezoidal fuzzy 
number if it is defined by the quadruplet ( )a,  b,  c,  d  and its function of membership is 
given as follows: 

 

 

( )

x a , if  a  r  b
b  a
1, if  b    r    c

x  = ,
d  x , if  c  x  d
d  c
0, otherwise

d

− ≤ ≤ − ≤ ≤m  − ≤ ≤
 −


where [a, d] and [b, c] are defined as the support and core of the d, respectively. (b – a) and 
(d – c) are called the left and right spreads of d, respectively. Then, the credibility measure 

{ }Cr   xξ≤  of a trapezoidal fuzzy number is obtained deriving the Eq. (1):
 

 

{ }

0, if  r  a
x – a , if  a  x  b

2(b –  a)
1Cr   x  = ., if  b  x  c
2
d – 2c + x , if   c  x  d
2(d – c)

1, if  d  x

≤

 ≤ ≤



ξ≤ ≤ ≤

 ≤ ≤
 ≤

Definition 3. Expected value (B. Liu & Liu, 2002). Let ξ be a fuzzy variable. Then, provided 
that at least one of the two integrals is finite, the expected value of ξ is defined by Eq. (2): 

 
( ) { } { }

+ 0

0
E  = Cr   x dx Cr  x dx.

∞

−∞
ξ ξ ≥ − ξ ≤∫ ∫  

(2)

From Eq. (2), it can be derived that the credibilistic expected value of a trapezoidal fuzzy 
number is given by Eq. (3).

 
( ) a + b + c + dE  = .

4
ξ

 
(3)

Definition 4. Semivariance (B. Liu & Liu, 2002). Let ξ be a fuzzy variable with finite expected 
value e = E [ξ]. Then the semivariance of ξ is defined by Eq. (4).

 
( )2SV  = E   e ,− 

ξ ξ−       
   

(4)

where,
   e, if    e e = .0, if  > e

− ξ− ξ ≤ ξ−   ξ

From Eq. (2) and Eq. (4), the credibility-measure-based semivariance of a trapezoidal 
fuzzy number is given by Eq. (5):
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3

2

2

( )( )

( )

.

(e – a) , if e < b
6(b – a)
b – a 3e – 2b – a  + 3(e – b)SV , if b  e  c

6
b – a 3e – 2b – a + 3(c – b)(2e – b – +( )  c) (c – e) (3d – 4c  e)+ , if e > c

6 6(d – c)




ξ = ≤ ≤   


  

(5)

Definition 5. Conditional Value at Risk (CVaR) (Bai & Liu, 2015). Let ξ be a fuzzy variable 
and   (0,1]β∈  be the confidence level. Then the CVaR of ξ is defined by Eq. (6).

 { }{ }CVaR = inf x | Cr   x   .β ξ ξ≤ ≥ β    
(6)

Finally, the credibilisticCVaR of a trapezoidal fuzzy number is given by Eq. (7).

 

( ) (
( ) (

a + 2 b – a , if   0,0.5
CVaR = .

2c – d + 2 d – c , if  0.5,1β
 β β∈  ξ    β β∈    

(7)

2. Multiobjective credibilistic return-risk-liquidity portfolio selection model

Next, we will introduce the proposed model to solve the multiobjective portfolio selection 
problem in the light of the credibility theory. But first, we will define the parameters and the 
decision-making variables that will be employed in the mathematical model: 

Parameters

ir
ξ : fuzzy rate of return of the i-th asset denoted by a trapezoidal fuzzy number, 

i i i i ir r r r r= (a ,b , c , d )ξ ,

il
ξ : fuzzy liquidity of the i-th asset denoted by a trapezoidal number 

i i i i il l l l l= (a ,b , c , d )ξ ,

pr
ξ : fuzzy return of the portfolio denoted by a trapezoidal fuzzy number 

p p p p pr r r r r( )= a ,b , c , dξ , 
e: portfolio’s expected return, 
ui: maximal percentage of the capital to be allocated to the i-th asset,
li: minimal percentage of the capital to be allocated to the i-th asset,
k: number of assets that are included in the investment portfolio.

Decision variables

wi: share of the available funds which have been used to purchase the i-th asset,
yi: a binary variable which specifies whether the i-th asset is included, or not, in the port-
folio. When the i-th asset is included in the portfolio the value of the variable is 1, and if 
the asset is not included, the value is 0.
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2.1. Objective functions 

Return 

Considering that in the financial markets there are several non-probabilistic factors that 
have an influence on the return of assets, this paper assumes that an investment manager 
has decided to allocate her investment budget among n assets which have fuzzy returns. As 
proposed by Bermúdez et al. (2012), Vercher et al., (2007) and Yue and Wang (2017), we con-
sider the observations of the historical dataset of the returns as a sample, so this study uses 
the sample percentiles to approximate the support and core of the trapezoidal fuzzy returns 
on the assets. In this sense, the support of 

ir
ξ , that is, the interval 

i ir r ][a , d, 
i ir r ][a , d

 
is given by the 5th 

and 95th percentile, respectively. The core of 
ir

ξ , that is, the interval 
i ir r[b , c ],

 i ir r[b , c ] is given by the 
40th and 60thpercentile, respectively. Thus, we can express the maximization of the expected 
return of the portfolio as follows:

 ( ) i i i in r r r r
1 i ii=1

a  + b  + c  + d
Max F = .

4

  
 w w 
    

∑
 

(8)

Liquidity 

Liquidity is a key issue that concerns investors during the portfolio selection process. Li-
quidity can be defined as the probability of converting an investment into cash without any 
significant loss in value (Arenas-Parra et al., 2001; Gupta et al., 2013b). Generally, investors 
prefer portfolios which can be liquidated at higher expected values as well as portfolios for 
which liquidation values are more certain. By following Arenas-Parra et al. (2001), Fang et al. 
(2006) and Gupta et al. (2013b), this study defines the asset’s liquidity using the turnover rate 
which is defined by the ratio of the average trading volume of the stocks traded in the market 
and the trading volume of the tradable stock (i.e., shares held by the public) corresponding 
to the asset.

Owing to incomplete information, the turnover rates are only vague estimates. Therefore, 
this study assumes that the turnover rate is a fuzzy number. The core and support of the 
trapezoidal fuzzy liquidity are obtained from the empirical percentiles of the historical data 
of liquidity, as previously explained. Then, the maximization of the expected liquidity of the 
portfolio can be expressed as:

 ( ) i i i in l l l l
2 i ii=1

a  + b  + c  + d
Max F = .

4

  
 w w 
    

∑
 

(9)

Risk 

In this research, we will employ two alternative risk measures: semivariance and CVaR. The 
minimization of portfolio’s semi-variance is denoted as:

( )

p

p
p p

p p p p p

p p

p p p p p p p p p p p

p
p p

3
r

r
r r

2
r r r r r

3 i r r
2

r r r r r r r r r r r
r

r r

(e – a )
, if e < b

6(b –a )
(b – a ) 3e – 2b – a + 3(e –b )

Min F  = , if b  e  c
6

b – a 3e – 2b – a + 3(

)

c – b )(2e – b – c ) c – e (3d – 4c + e)
+ , if e > c

6 6(d – c )

(

( )( ) ( )





w ≤ ≤




.






 
(10)
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The minimization of portfolio’s CVaR is denoted as:

 ( )
( )

( )

n

i
i=1

3 i n

i
i=1

w a + 2 b – a , if   (0,0.5]
Min F = .

w 2c – d + 2 d – c , if  (0.5,1]


  β β∈ 

w 
  β β∈ 


∑

∑
 

(11)

2.2. Constraints 

In order to account for some common realistic problems faced by investors, several con-
straints have been included in the decision problem. 

All the available investment budget must be allocated

 
n

i
i=1

=1.w∑
 

(12)

Selling short is not allowed
 i 0,  i = 1, 2, …, n.w ≥  (13)

There is a maximum rate of the available budget that can be used to invest in a single asset

 i i iu y ,  i = 1, 2, …, n.w ≤  (14)

It is not allowed to invest in an asset less than a determined rate of the available budget

 i i il y ,  i = 1, 2, …, n.w ≥  (15)

The number of assets included in the portfolio is denoted as

 
n

i
i=1

y =k,∑  { }iy 0,1 ,  i = 1, 2, …, n.∈  (16)

2.3. Definition of the decision problem

The formulation of the credibilistic model which considers as decision-making criteria 
return, risk and liquidity is expressed as:

 ( ) ( ) ( )1 i 2 i 3 iMax  F     Max  F     Min  Fw w w

                                  
                                  

{ }

n

i
i=1

i
i i i
i i i

n

i
i=1

i

=1, i = 1, 2, …, n

0,       i = 1, 2, …, n
u y ,      i = 1, 2, …, n

s.t. .l y ,        i = 1, 2, …, n

y =k

y 0,1 , i = 1, 2, …, n


 w

w ≥
w ≤
w ≥




 ∈

∑

∑
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Following Vercher and Bermúdez (2013) an eligible portfolio eP  is defined as Pareto-
efficient if no other eligible portfolio oP  exists so that 

1( ) 1( )i i

o e
F FP P

w w
≥ , 

2( ) 2( )i i

o e
F FP P

w w
≥ , and 

3( ) 3( )i i

o e
F FP P

w w
≤ , with at least one strict inequality. The efficient frontier is composed by all 

portfolios which are Pareto-efficient, and represents a surface when drawn in the 3-D space 
of the three objectives F (F1, F2, F3).

2.4. Portfolio selection

The multiobjectivecredibilistic return-risk-liquidity portfolio selection model is formulated 
as: Once the Pareto optimal frontier or efficient frontier is obtained, the next step is to select 
a portfolio on this frontier. In this study, two ratios are employed to this end, depending on 
the risk measure used. When the semivariance is used as to quantify risk, the Sortino ratio 
is applied. In the case of the CVaR, the STARR ratio is used. 

The Sortino ratio is a modification of the Sharpe ratio and employs the semivariance to 
gauge volatility so that only returns below a certain threshold are penalized. The Sortino ratio 
in a credibilistic environment is computed as:

 
( ) ( )

( )
p Rf

p

E  – E   
Sortino ratio = ,

SV

ξ ξ

ξ
 

(17)

where, ( )pE  ξ denotes portfolio’s expected fuzzy return, ( )pSV ξ  denotes the fuzzy semivari-
ance, and ( )RfE ξ  stays for the required profitability of the investment.

The STARR ratio focuses on the risk of extreme losses and serves to value the expected 
excess return for unit of risk represented by CVaR. In a credibilistic environment this ratio 
is computed as follows:

 
( ) ( )

( )
p Rf

p

E – E   
STARR ratio = ,

CVaR

ξ ξ

ξ
 

(18)

where, ( )pE  ξ represents portfolio’s expected fuzzy return, ( )pCVaR ξ  denotes the fuzzy 
CVaR measure and ( )RfE ξ expresses the required profitability of the investment.

3. Use of NSGA-II to solve the proposed model 

In the previous section, we have presented a multiobjective credibilistic portfolio selection 
model in which the crisp goals of return, risk and liquidity are the objective functions. Note 
that the calculation of the expected return, the risk and the expected liquidity is influenced 
by two factors i) the attributes of the trapezoidal fuzzy returns and trapezoidal fuzzy liquid-
ity of each asset, and ii) the average of the fuzzy numbers. Furthermore, the inclusion of 
real-world constraints into the suggested model changes the former classical quadratic op-
timization problem into a NP-hard quadratic mixed-integer one. In order to overcome this 
drawback, the constrained portfolio optimization problem has been approached employing 
multiobjective evolutionary algorithms (MOEAs). NSGA-II, which was introduced by Deb, 
Agrawal, Pratap and Meyarivan (2002) is commonly employed MOEA to deal with this kind 
of optimization problems (Liagkouras & Metaxiotis, 2015). Our study employs NSGA-II to 
solve the proposed model. 
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NSGA-II is an improved version of NSGA (Srinivas & Deb, 1994). Compared to its pre-
decessor, NSGA-II has three significant features: i) a fast efficient non-dominated sorting 
scheme that reduces the computational complexity; ii) an elitist selection method for cap-
turing the Pareto optimal front; and iii) a crowding-distance operator for preserving the 
diversity in the population. 

Briefly, the main loop (Figure 1) of NSGA-II can be described as follow (Deb et al., 2002; 
Palanikumar et al., 2009):

Step 1: A combined population (parent and offspring) t t tR =P Q∪  of size 2N is formed, and 
the resulting population is classified using a fast non-domination procedure. As a result of 
this step, different non-dominated fronts F1, F2, etc. are obtained; 

Step 2: To obtain the new parent population t+1P  the solutions from the first front F1 and 
continuing are added until the size exceeds N;

Step 3: Next, we sort the solutions of the last accepted front applying a crowded-compar-
ison criterion ( n) , then the first N points are chosen;

Step 4: We construct the population t+1P  of size N utilizing the method described in which 
selection, crossover and mutation are employed to generate the new population t+1Q of size N. 

Step 5: The optimal portfolio is selected among all non-dominated portfolios applying the 
proposed credibilistic Sortino ratio or the credibilistic STARR ratio, depending on the risk 
measure employed.

Once the general characteristics of NSGA-II have been presented, we have to specify the 
experimental configuration of the parameters that will be used to test the real-world appli-
cability of the presented approach: the size of the population is 400, the distribution index 
for crossover is set at 10; the probability of crossover is set at 0.9; the distribution index for 
mutation is 50; the probability of mutation is 0.01; and the maximum number of generations 
is limited at 500. Figure 2 displays the general framework of the proposed approaches.

Figure 1. NSGA-II Procedure
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4. Empirical study

4.1. Database and experiment description

In order to present the performance of the model introduced above, here we illustrate a 
realistic empirical analysis on stocks included in the American S&P 100 stock index using 
data provided by Economatica. Two models will be introduced, as we will use two alternative 
risk measures: semivariance and CVaR. The data correspond to adjusted prices in a one-week 
timeframe and stock liquidity. The data cover t = 829 weeks from 2003/02/14 to 2018/12/28. 
Returns of asset rit are calculated as ( ) ( )it it it–1 it–1r = p – p / p , i = 1, 2, …, n; t = 1, 2, …, 829, 
where pit is the closing price of the i-th asset on Friday of week t. 

By employing the stocks included in this stock index makes it is possible to compare the 
outcome obtained by the models which have been described in the previous sections and the 
S&P 100 ETF, which acts as the benchmark. This comparison, however, will only be possible 
regarding return and risk, as no data are available regarding ETF liquidity. 

Figure 2. General framework of the proposed approaches
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Following Gupta, Mehlawat, Inuiguchi and Chandra (2014b) a portfolio should not hold 
too many assets nor too few. While it is not necessary to hold many assets to achieve a cor-
rect diversification, if the number of assets in the portfolio is too reduced, it is not possible 
to correctly manage risks. Thus, following this recommendation, this study considers to set 
k = 10 as the number of assets to be hold in the portfolio.

We also apply an upper bound constraint of 30% and a lower bound constraint of 5%. 
This means that the investor is not willing to invest more than 30% nor less than 5% of the 
budget in one stock, which are usual limits by investors. These assumptions are feasible and 
consistent with practical investment making scenarios recorded in literature (Gupta et al., 
2020a, 2013b; Jalota et al., 2017a; Saborido et al., 2016; Vercher & Bermúdez, 2013, 2015).

Using a window of 5 years, each model obtains a portfolio, that is, each model defines 
the stocks that must be incorporated in the investment portfolio and their weights. The 
performance of this portfolio is then tracked during the next six months. Then, the models 
are again optimized using the information of the last 5 years, i.e., moving the previous win-
dow forward six months. This procedure has been repeated 20 times, so the portfolios have 
been recalculated 20 times in the period from 2008 to 2018 using 20 overlapping rolling-
windows. Doing this, it is possible to contrast the performance of the models in a 10-years 
out-of-sample period in a realistic situation where investors rebalance their portfolios twice  
a year.

4.2. Results

As a first step, the models obtain the efficient frontier, which is composed by many alternative 
portfolios, each of which contains different stocks with different weights. 

Figures 3 and 4 show 3-dimensional plots of the final populations generated by NSGA-II 
for the semivariance and CVaR models, respectively, which correspond to the last period 
analyzed, the one from June 2013 to June 2018, which is used to select the portfolio to be 
hold in the second semester of 2018. The outcome for the other periods is very similar. The 
points represent the set of efficient portfolios (also called non-dominated portfolios). It is 
not possible to find a portfolio which can beat any of the portfolios on the efficient frontier 
regarding the three criteria employed in the selection process, that is, return, liquidity and 
risk. NSGA-II supplies sets of efficient portfolios distributed on Pareto’s optimal front, pro-
viding investors with an accurate and real illustration of the trade-offs. 

Figures 3 and 4 reveal the similar shape of the efficient frontier obtained depending on 
the risk measure applied, regarding the relationship between the three criteria (return, risk 
and liquidity).

In order to analyze this relationship, Spearman’s rank partial correlation coefficient is 
applied. Doing this, we can better assess the relationship between risk and return, as we can 
erase the impact of liquidity on this relationship. We expect both variables to have a positive 
correlation. Furthermore, thanks to Spearman’s rank partial correlation coefficient we can get 
to know the connection of return and risk with liquidity. Table 1 shows that the correlation be-
tween return and risk is positive, which means that those portfolios which are more profitable 
are riskier, as well. This is the case both in the semivariance model and in the CVaR model.  
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Regarding liquidity, in the semivariance model, more liquid portfolios are riskier, but less 
profitable. Conversely, less liquid portfolios are less risky and more profitable. This relation-
ship between liquidity and risk can be explained by the fact that more liquid assets are traded 
more often and therefore their price may change more often, which means that their volatil-
ity may rise compared to less traded assets. Regarding the liquidity-return correlation, the 
result suggests that companies which are traded more often are not so profitable than those 
with less trades.

In the CVaR model, the correlation between liquidity and return and liquidity and risk 
is not significant. This does not necessarily mean that there is no correlation between these 
variables, but the correlation can be nonlinear. In fact, as can be observed in Figure 5, in the 
CVaR model, there is a clear nonlinear correlation between liquidity and return (Figure 5d) 
and liquidity and risk (Figure 5f).

Once the efficient frontier is obtained, a specific portfolio must be selected. Obviously, 
in a realistic investment scenario, investors need to pick a portfolio along the Pareto opti-
mal front (Figure 3) that meets his/her preferences. As explained above, in the case of the 
credibilistic semivariance model, we have chosen the Sortino ratio as the method to pick the 
optimal portfolio, and the STARR ratio, in the case of the credibilistic CVaR model. Using a 
5-year long rolling window, a total of 20 portfolios are selected for each model. The evolu-
tion of each portfolio is tracked during 6 months and then the procedure is repeated to get 

Figure 3. Pareto optimal front of the credibil-
istic mean-semivariance-liquidity model

Figure 4. Pareto optimal front of the credibilistic 
mean-CVaR-liquidity model

Table 1. Partial correlation matriz with Spearman’s rank 

Semivariance model CVaR model

Return Risk Liquidity Return Risk Liquidity

Return 1.000 1.000
Risk 0.808** 1.000 0.999** 1.000
Liquidity –0.815** 0.957** 1.000 –0.060 0.024 1.000

Note: ** Correlation is significant at the 0.01 level.
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a renewed portfolio. The performance of the models regarding return, risk and liquidity and 
the comparison with the benchmark are shown in Table 2.

Table 2 shows that both models beat the benchmark regarding return and risk in the 
period analyzed. The portfolios optimized along the 10 years have obtained more return and 
were less risky than the benchmark. When comparing the semivariance and the CVaR mod-
els, Table 2 shows that the semivariance model had better results in terms of mean return, 
risk and liquidity. Furthermore, the standard deviation has been smaller for all these criteria.

Figure 5. Distribution of the Pareto optimal front in the bivariate dimensions
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Table 2. Mean values and standard deviation for return, risk 
and liquidity of the credibilistic models and the ETF S&P100

Return Risk Liquidity

Semivariance Model 0.0029
(0.0052)

0.0013
(0.0013)

0.0665
(0.0759)

CVaR Model 0.0023
(0.0055)

0.0015
(0.0022)

0.0639
(0.0733)

ETF S&P 100 –0.0010
(0.0214)

0.0435
(0.0613) –

Note: The value of the standard deviation is in parentheses.

A comparison regarding of the models and the ETF regarding liquidity is not been possi-
ble due to the lack of information about the liquidity of the ETF. To allow for a more insight-
ful description of dispersion, values in Table 2 have been additionally depicted in Figure 6.  
This way, differences between distributions are highlighted at a glance.

These results show that the applied multiobjective portfolio selection models may be help-
ful for investment managers who want to consider additional criteria together with the return 
and risk. This conclusion can be drawn as well when analyzing the out-of-sample evolution of 
results (Figure 7) and risk (Figure 8). Figure 7 shows the cumulative return of the portfolios 
along the 10-year period under scrutiny, during which portfolios were rebalanced twice a 
year. The evolution of return of the two credibilistic models shows a positive upward trend, 
whereas the evolution of the ETF considerably differs.

a) Return b) Risk

c) Liquidity

Figure 6. Boxplot graphs with return, risk and liquidity of the credibilistic models and the benchmark
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The evolution of the risk of the different portfolios obtained and the benchmark is drawn 
in Figure 8. Once again, it is evident that the performance of both credibilistic models along 
the period analyzed is much better than the performance of the ETF.

Figure 7. Evolution of the cumulative return

Figure 8. Evolution of risk
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Conclusions

Portfolio selection is one of the most dynamic topics in modern financial theory. Tradi-
tionally, the portfolio selection problem has been addressed under conditions of certainty 
and considering solely return and risk as decision criteria. More recently, other approaches 
have been introduced to cope with uncertain scenarios and to include more variables in the 
decision-making process. This paper extends the stochastic mean-variance model to a credi-
bilistic multiobjective model in which return, risk and liquidity are employed to measure 
portfolio performance. In order to quantify the uncertainty of the future returns and the li-
quidity of each risky asset, this study uses trapezoidal fuzzy numbers. As risk measures, both 
the semivariance and the CVaR have been used. The Non dominated Sorting Genetic Algo-
rithm II (NSGA-II) is applied to select efficient portfolios in the fuzzy return-risk-liquidity 
trade-off in the presence of cardinality constraint and upper and lower bound constraints and 
to create the efficient frontier. The Sortino ratio and the STARR ratio have been employed, 
depending on the risk measure used, to select one efficient portfolio among those located 
on the efficient frontier.

To illustrate the usefulness of the proposed model and the solution approach for the mul-
tiobjective portfolio selection, this paper presents a realistic empirical study on the S&P100 
stock index. The two credibilistic models are compared with the ETF S&P100 as benchmark. 
We use the Sortino ratio in the case of the credibilistic semivariance model and the STARR 
ratio in the case of the credibilistic CVaR model in order to select the optimal portfolio. A 
total of 20 portfolios are selected for each model by using a 5-year long rolling window. Then, 
the evolution of each portfolio is tracked during 6 months and afterwards this procedure is 
repeated to select a new portfolio. Results show that the models can beat the ETF in terms 
of return and risk in the period analyzed, from 2008 until 2018.

In view of the above discussions, this study concludes that the proposed model provides 
decision-makers with an effective and practicable alternative to solve the portfolio selection 
problem. Considering both uncertainty and real-life investment criteria, our approach can be 
useful for academics and practitioners interested in active investment strategies.

Further research should be carried out to test the model in a fuzzy random environment, 
or extend it to a multi-period portfolio selection problem. Furthermore, it might be inter-
esting to identify and add other realistic criteria and constraints faced by investors such as 
round-lots, transaction costs, pre-assignment, etc.
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