Share:


EDAS method for multiple attribute group decision making under q-rung orthopair fuzzy environment

    Zengxian Li Affiliation
    ; Guiwu Wei Affiliation
    ; Rui Wang Affiliation
    ; Jiang Wu Affiliation
    ; Cun Wei Affiliation
    ; Yu Wei Affiliation

Abstract

Extended q-rung orthopair fuzzy sets (q-ROFSs) is an excellent tool to depict the qualitative assessing information in multiple attribute group decision making (MAGDM) environments. The EDAS method is very effective especially when the conflicting attributes exist in the MAGDM issues in which the optimal alternative should have the biggest value of PDAS and the smallest value of NDAS. In this paper, we put forward the EDAS method for MAGDM issues under q-ROFSs, which makes use of average solution (AS) for assessing the chosen alternatives. The positive distance from AS (PDAS) and negative distance from AS (NDAS) is derived through the score of q-ROFSs. Then, the sorting order or the optimal alternative can be acquired by computing integrative appraisal score. Finally, a numerical example for buying a refrigerator is given to testify our developed EDAS method and some comparative analysis are also raised to further show the precious merits of this method.


First published online 27 November 2019

Keyword : multiple attribute group decision making (MAGDM), q-rung orthopair fuzzy sets (q-ROFSs), EDAS method, q-ROFHA operator, q-ROFHG operator, refrigerator

How to Cite
Li, Z., Wei, G., Wang, R., Wu, J., Wei, C., & Wei, Y. (2020). EDAS method for multiple attribute group decision making under q-rung orthopair fuzzy environment. Technological and Economic Development of Economy, 26(1), 86-102. https://doi.org/10.3846/tede.2019.11333
Published in Issue
Jan 2, 2020
Abstract Views
3094
PDF Downloads
1213
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bai, K. Y., Zhu, X. M., Wang, J., & Zhang, R. T. (2018). Some Partitioned maclaurin symmetric mean based on q-rung orthopair fuzzy information for dealing with multi-attribute group decision making. Symmetry, 10(9), 383. https://doi.org/10.3390/sym10090383

Kahraman, C., Keshavarz Ghorabaee, M., Zavadskas, E. K., Onar, S. C., Yazdani, M., & Oztaysi, B. (2017). Intuitionistic fuzzy EDAS method: An application to solid waste disposal site selection. Journal of Environmental Engineering and Landscape Management, 25, 1-12. https://doi.org/10.3846/16486897.2017.1281139

Karabasevic, D., Zavadskas, E. K., Stanujkic, D., Popovic, G., & Brzakovic, M. (2018). An approach to personnel selection in the it industry based on the EDAS method. Transformations in Business & Economics, 17, 54-65.

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). A dynamic fuzzy approach based on the EDAS method for multi-criteria subcontractor evaluation. Information, 9(3), 68. https://doi.org/10.3390/info9030068

Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Turskis, Z. (2017). Multi-criteria group decision-making using an extended edas method with interval type-2 fuzzy sets. E & M Ekonomie a Management, 20, 48-68. https://doi.org/10.15240/tul/001/2017-1-004

Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2017). Stochastic EDAS method for multi-criteria decision-making with normally distributed data. Journal of Intelligent & Fuzzy Systems, 33, 1627-1638. https://doi.org/10.3233/JIFS-17184

Keshavarz Ghorabaee, M., Zavadskas, E. K., Amiri, M., & Turskis, Z. (2016). Extended EDAS method for fuzzy multi-criteria decision-making: An Application to supplier selection. International Journal of Computers Communications & Control, 11, 358-371. https://doi.org/10.15837/ijccc.2016.3.2557

Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26, 435-451. https://doi.org/10.15388/Informatica.2015.57

Li, Z. X., Gao, H., & Wei, G. W. (2018). Methods for multiple attribute group decision making based on intuitionistic fuzzy Dombi Hamy mean operators. Symmetry, 10(11), 574. https://doi.org/10.3390/sym10110574

Li, Z. X., Wei, G. W., & Gao, H. (2018). Methods for multiple attribute decision making with intervalvalued Pythagorean fuzzy information. Mathematics, 6(11), 228. https://doi.org/10.3390/math6110228

Li, Z. X., Wei, G. W., & Lu, M. (2018). Pythagorean fuzzy Hamy mean operators in multiple attribute group decision making and their application to supplier selection. Symmetry, 10(10), 505. https://doi.org/10.3390/sym10100505

Liang, D. C., Xu, Z. S., Liu, D., & Wu, Y. (2018). Method for three-way decisions using ideal TOPSIS solutions at Pythagorean fuzzy information. Information Sciences, 435, 282-295. https://doi.org/10.1016/j.ins.2018.01.015

Liu, P. D., & Liu, J. L. (2018). Some q-rung orthopai fuzzy bonferroni mean operators and their application to multi-attribute group decision making. International Journal of Intelligent Systems, 33, 315-347. https://doi.org/10.1002/int.21933

Liu, P. D., & Wang, P. (2018). Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. International Journal of Intelligent Systems, 33, 259-280. https://doi.org/10.1002/int.21927

Mirghafoori, S. H., Izadi, M. R., & Daei, A. (2018). Analysis of the barriers affecting the quality of electronic services of libraries by VIKOR, FMEA and entropy combined approach in an intuitionisticfuzzy environment. Journal of Intelligent & Fuzzy Systems, 34, 2441-2451. https://doi.org/10.3233/JIFS-171695

Peng, X. D., & Dai, J. G. (2017). Approaches to Pythagorean fuzzy stochastic multi-criteria decision making based on prospect theory and regret theory with new distance measure and score function. International Journal of Intelligent Systems, 32, 1187-1214. https://doi.org/10.1002/int.21896

Peng, X. D., Dai, J. G., & Garg, H. (2018). Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function. International Journal of Intelligent Systems, 33, 2255-2282. https://doi.org/10.1002/int.22028

Stanujkic, D., Zavadskas, E. K., Keshavarz Ghorabaee, M., & Turskis, Z. (2017). An extension of the EDAS Method based on the use of interval grey numbers. Studies in Informatics and Control, 26, 5-12. https://doi.org/10.24846/v26i1y201701

Stevic, Z., Vasiljevic, M., Zavadskas, E. K., Sremac, S., & Turskis, Z. (2018). Selection of carpenter manufacturer using Fuzzy EDAS method. Inzinerine Ekonomika-Engineering Economics, 29, 281290. https://doi.org/10.5755/j01.ee.29.3.16818

Wang, J., Gao, H., & Wei, G. W. (2019). The generalized Dice similarity measures for Pythagorean fuzzy multiple attribute group decision making. International Journal of Intelligent Systems, 34, 1158-1183. https://doi.org/10.1002/int.22090

Wang, J., Wei, G. W., & Gao, H. (2018). Approaches to multiple attribute decision making with intervalvalued 2-tuple linguistic Pythagorean fuzzy information. Mathematics, 6(10), 201. https://doi.org/10.3390/math6100201

Wang, J., Wei, G. W., Lu, J. P., Alsaadi, F. E., Hayat, T., Wei, C., & Zhang, Y. (2019). Some q-rung orthopair fuzzy Hamy mean operators in multiple attribute decision making and their application to enterprise resource planning systems selection. International Journal of Intelligent Systems, 34, 2429-2458. https://doi.org/10.1002/int.22155

Wang, P., Wang, J., Wei, G. W., & Wei, C. (2019). Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications. Mathematics, 7(4), 340. https://doi.org/10.3390/math7040340

Wei, G. W. (2019). Pythagorean fuzzy Hamacher power aggregation operators in multiple attribute decision making. Fundamenta Informaticae, 166, 57-85. https://doi.org/10.3233/FI-2019-1794

Wei, G. W., Gao, H., & Wei, Y. (2018). Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. International Journal of Intelligent Systems, 33, 1426-1458. https://doi.org/10.1002/int.21985

Wei, G. W., Wei, C., Wang, J., Gao, H., & Wei, Y. (2019). Some q-rung orthopair fuzzy maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization. International Journal of Intelligent Systems, 34, 50-81. https://doi.org/10.1002/int.22042

Wu, L. P., Wang, J., & Gao, H. (2019). Models for competiveness evaluation of tourist destination with some interval-valued intuitionistic fuzzy Hamy mean operators. Journal of Intelligent and Fuzzy Systems, 36, 5693-5709. https://doi.org/10.3233/JIFS-181545

Wu, L. P., Wei, G. W., Gao, H., & Wei, Y. (2018). Some interval-valued intuitionistic fuzzy Dombi Hamy mean operators and their application for evaluating the elderly tourism service quality in tourism destination. Mathematics, 6(12), 294. https://doi.org/10.3390/math6120294

Yager, R. (2017). Generalized orthopair fuzzy sets. Ieee Transactions on Fuzzy Systems, 25, 1222-1230. https://doi.org/10.1109/TFUZZ.2016.2604005

Yager, R. R. (2014). Pythagorean membership grades in multicriteria decision making. Ieee Transactions on Fuzzy Systems, 22, 958-965. https://doi.org/10.1109/TFUZZ.2013.2278989

Yang, W., & Pang, Y. F. (2019). New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making. International Journal of Intelligent Systems, 34, 439-476. https://doi.org/10.1002/int.22060