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Abstract. Extended q-rung orthopair fuzzy sets (q-ROFSs) is an excellent tool to depict the qualita-
tive assessing information in multiple attribute group decision making (MAGDM) environments. 
The EDAS method is very effective especially when the conflicting attributes exist in the MAGDM 
issues in which the optimal alternative should have the biggest value of PDAS and the smallest value 
of NDAS. In this paper, we put forward the EDAS method for MAGDM issues under q-ROFSs, 
which makes use of average solution (AS) for assessing the chosen alternatives. The positive distance 
from AS (PDAS) and negative distance from AS (NDAS) is derived through the score of q-ROFSs. 
Then, the sorting order or the optimal alternative can be acquired by computing integrative ap-
praisal score. Finally, a numerical example for buying a refrigerator is given to testify our developed 
EDAS method and some comparative analysis are also raised to further show the precious merits 
of this method.

Keywords: Multiple attribute group decision making (MAGDM), q-rung orthopair fuzzy sets (q-
ROFSs), EDAS method, q-ROFHA operator, q-ROFHG operator, refrigerator.
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Introduction

In recent years, Pythagorean fuzzy sets (PFSs) (Yager, 2014) has appeared as an useful tool 
for characterizing ambiguity and complexity of the MAGDM(Wang, Gao, & Wei, 2019; Wu, 
Wang, & Gao, 2019). The PFS is depicted by the functions of membership and non-mem-
bership, which satisfies the sum of squares of them are limited to 1. Intuitionistic fuzzy sets 
(IFSs) (Li, Gao, & Wei, 2018; Wei, 2019; Wu, G. W. Wei, Gao, & Y. Wei, 2018) are a part of 
the PFSs (Li, Wei, & Gao, 2018; Li, Wei, & Lu, 2018; Peng & Dai, 2017), which means the PFS 
is more useful to solve the MAGDM. Moreover, according to the PFSs, Yager (2017) further 
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designed the q-rung orthopair fuzzy sets (q-ROFSs), each element in q-ROFSs satisfies the 
sum of the qth power of membership function and non-membership function is less or equal 
to 1(Wang et al., 2019; P. Wang, J. Wang, G. W. Wei, & C. Wei, 2019; Wei, Wei, Wang, Gao, & 
Wei, 2019). Liu and Wang (2018) defined two q-rung orthopair fuzzy aggregation operators 
for solving MADM under q-ROFSs. P. D. Liu and J. L. Liu (2018) developed some Bonferroni 
mean operators under q-ROFSs. Yang and Pang (2019) presented the partitioned Bonferroni 
mean operators under q-ROFSs. G. W. Wei, C. Wei, Wang, J., Gao, H., & Y. Wei (2019) ex-
tended the MSM and dual MSM (DMSM) operators (Wang, Wei, & Gao, 2018) to q-ROFSs. 
Bai, Zhu, Wang, and Zhang (2018) defined the partitioned MSM operator under q-ROFSs. 
G. W. Wei, Gao, and Y. Wei (2018) studied the generalized Heronian mean (HM) operator 
with q-ROFNs to handle MAGDM problems. Peng, Dai, and Garg (2018) defined the new 
score function and exponential operational laws about q-ROFNs. 

Keshavarz Ghorabaee, Zavadskas, Olfat, and Turskis (2015) firstly defined the original 
EDAS to solve many MADM problems. The EDAS method is very effective especially when 
the conflicting criteria exist in the MADM problem. Similar to VIKOR method (Mirgha-
foori, Izadi, & Daei, 2018) and TOPSIS method (Liang, Xu, Liu, & Wu, 2018), some classical 
distances are also derived for EDAS method. However, EDAS method should be calculated 
as PDAS (Positive Distance from Average Solution) and NDAS (Negative Distance from 
Average Solution) on the basis of AS(average solution). The best alternative should have the 
biggest value of PDAS and the smallest value of NDAS (Keshavarz Ghorabaee, Zavadskas, 
Amiri, & Turskis, 2016). Kahraman et al. (2017) built EDAS method under IFSs. Keshavarz 
Ghorabaee, Amiri, Zavadskas, and Turskis (2017) analyzed the interval type-2 fuzzy EDAS 
method. Keshavarz Ghorabaee, Amiri, Zavadskas, Turskis, and Antucheviciene (2017) ap-
plied the EDAS method to stochastic MADM. Stanujkic, Zavadskas, Keshavarz Ghorabaee, 
and Turskis (2017) extended the EDAS method to grey numbers. Karabasevic, Zavadskas, 
Stanujkic, Popovic, and Brzakovic (2018) proposed the EDAS method with SWARA. Kes-
havarz-Ghorabaee, Amiri, Zavadskas, Turskis, and Antucheviciene (2018) developed EDAS 
method in dynamic MCGDM. Stevic, Vasiljevic, Zavadskas, Sremac, and Turskis (2018) de-
signed one of the newer methods-multicriteria analysis of fuzzy EDAS method to choose the 
most suitable manufacturer of PVC carpentry for the apartment refurbishing. 

From above analysis, it’s shown that EDAS methods with q-ROFNs to solve MADM don’t 
exist. The goal of this paper is to build q-ROFN-EDAS model and to buy a refrigerator in order 
to cope with sudden power outages. The rest of this manuscript can be structured as below: 
some basic knowledge of q-ROFNs is reviewed in section 1. The EDAS method for MAGDM 
with q-ROFNs is established in Section 2. A numerical example for buying a refrigerator has 
been given to illustrate this method in Sections 3 and 4. The last section gives some conclusions.

1. Preliminaries

1.1. q-rung orthopair fuzzy sets

Yager (2017) defined the q-rung orthopair fuzzy sets (q-ROFSs) as below.
Definition 1 (Yager, 2017). Let T be a fixed set. A q-ROFS Mcan be given as:

 ( ) ( ){ }, , ,M MM T t t t T= µ ν ∈   (1)
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where the function ( ) : 0,1M t Mµ →     is the membership degree and the function
( ) : 0,1M t Mν →     is the non-membership degree, moreover, for every t ∈ T, it satisfies:

 ( )( ) ( )( ) 1.
q q

M Mt tµ + ν ≤   (2)

In addition, the degree of hesitancy is defined as ( ) ( )( ) ( )( )1
q qq

M M Mt t t π = − µ − ν 
 

. 

Definition 2 (Yager, 2017). Let ( ),M MM = µ ν be a q-ROFN, a score value S is: 

 ( ) ( )( ) ( )( ) ( ), 1,1 .
q q

M MS M t t S M= µ − ν ∈ −     (3)

Definition 3 (Liu & Wang, 2018). Let ( ),M MM = µ ν  be a q-ROFN, an accuracy value H is: 

 ( ) ( )( ) ( )( ) ( ), 0,1
q q

M MH M t t H M= µ + ν ∈     (4)

to assess the accuracy of the q-ROFN ( ),M MM = µ ν .

Definition 4 (Liu & Wang, 2018). Let ( )1 11 ,M MM = µ ν and ( )2 22 ,M MM = µ ν be two  
q-ROFNs, ( ) ( )( ) ( )( )1 11

q q
M MS M t t= −µ ν and ( ) ( )( ) ( )( )2 22

q q
M Mt tS M = −µ ν are scores of 

M1 and M2, ( ) ( )( ) ( )( )1 11
q q

M Mt tH M = +µ ν and ( ) ( )( ) ( )( )2 22
q q

M Mt tH M = +µ ν are accu-
racy value of M1 and M2. Then, if ( ) ( )1 2S M S M< , then 1 2M M< ; if ( ) ( )1 2S M S M= , then 
(1) if ( ) ( )1 2H M H M= , then M1 = M2; (2) if ( ) ( )1 2HH M M> , then M1 > M2.

Definition 5 (Yager, 2017). Let ( )1 11 ,M MM = µ ν  and ( )2 22 ,M MM = µ ν  be two q-ROFNs. 
Then, 

 ( ) ( ) ( ) ( )1 2 1 2 1 21 2 , ;
q q q qq

M M M M M MM M
 

⊕ = µ + µ − µ µ ν ν  
 

  (5)

( ) ( ) ( ) ( )1 2 1 2 1 21 2 , ;
q q q qq

M M M M M MM M
 

⊗ = µ µ ν + ν − ν ν  
 

  (6)

( ) ( )1 11 1 1 , ;
kq k

k
M MkM

 
  = − − µ ν   

 

  (7)

( ) ( )1 11 , 1 1 .
kk qqk

M MM
 

  = µ − − ν   
 

  (8)

Example 1. Let ( )1 0.6,0.3M = , ( )2 0.7,0.4M = , ( )3 0.5,0.2M =  be three q-ROFNs 
( )3, 2q k= = , according to Definitions 5, we can get

( ) ( )3 3 3 3 3 3 3
1 2 0.6 0.7 0.6 0.7 ,0.3 0.4 0.7856,0.0017 ;M M⊕ = + − × × =

( ) ( )33 3 3 3 3 3
1 2 0.6 0.7 , 0.3 0.4 0.3 0.4 0.0741,0.4469 ;M M⊗ = × + − × =

( ) ( )23 23
32 1 1 0.5 ,0.2 0.6166,0.0400 ;M

 
= − − = 
 

( ) ( ) ( )22 2 33
3 0.5 , 1 1 0.2 0.2500,0.2516 .M

 
= − − = 
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1.2. q-rung orthopair fuzzy aggregation operators

Liu and Wang (2018) defined the q-rung orthopair fuzzy WA (q-ROFWA) operator and the 
q-rung orthopair fuzzy WG (q-ROFWG) operator. 

Definition 6 (Liu & Wang, 2018). Let ( )( , ) 1,2, ,
l ll M MM l n= µ ν = 

 be a set of q-ROFNs, 
and q-ROFWA is defined:

 ( )1 2 1 1 2 2q-ROFWA , , , n n nM M M M M Mϑ = ϑ ⊕ϑ ⊕ ⊕ϑ = 

( ) ( )
1 1

1 1 , ,
l

l

l l

n nq
q

M M
l l

ϑ ϑ

= =

 
  − − µ ν   

 
∏ ∏   (9)

where ( )1 2, , , T
nϑ = ϑ ϑ ϑ  is the weight of ( )1,2, ,lM l n=  , with ( )0,1 1,2, ,lM l n∈ =     

and 
1

1
n

l
l=

ϑ =∑ . 

Definition 7. Let ( , )( 1,2, , )
l ll M MM l n= µ ν =   be a set of q-ROFNs, and q-ROFWG is 

defined:

 ( ) 1 2
1 2 1 2q-ROFWG , , , n

n nM M M M M Mϑϑ ϑ
ϑ == ⊗ ⊗ ⊗ 

                     

( ) ( )
1 1

, 1 ,
l

l

l l

n n q
q

M M
l l

ϑϑ

= =

 
  µ − µ   

 
∏ ∏   (10)

where ( )1 2, , , T
nϑ = ϑ ϑ ϑ  is the weight of ( )1,2, ,lM l n=  , with 0,1lM ∈  ( )1,2, ,l n=   

and 
1

1
n

l
l=

ϑ =∑ .

Example 2. Let ( )1 0.8,0.5M = , ( )2 0.7,0.3M = , ( )3 0.6,0.4M = , ( )4 0.9,0.1M =  be four  
q-ROFNs, and ( )0.2,0.4,0.1,0.3ϑ =  is the weight vector of ( )1,2,3,4lM l = , according to 
Definitions 6−7, we can get (q = 3):

( ) ( ) ( )
4 43

31 2 3 4
1 1

q-ROFWA , , , 1 1 ,
l

l

l lM M
l l

M M M M
ϑ ϑ

ϑ
= =

 
  = − − µ ν =   

 
∏ ∏

( ) ( ) ( ) ( ) ( )
0.2 0.4 0.1 0.33 3 3 33

0.2 0.4 0.1 0.3

1 1 0.8 1 0.7 1 0.6 1 0.9 , 0.8025,0.2460 ;
0.5 0.3 0.4 0.1

 
− − × − × − × −  =

 × × × 

( ) ( ) ( )
4 4 3

31 2 3 4
1 1

q-ROFWG , , , , 1
l

l

l lM M
l l

M M M M
ϑϑ

ϑ
= =

 
  = µ − ν =   

 
∏ ∏

( ) ( ) ( ) ( ) ( )
0.2 0.4 0.1 0.3

0.2 0.4 0.1 0.33 3 3 33

0.8 0.7 0.6 0.9 ,
0.7634,0.3519 .

1 1 0.5 1 0.3 1 0.4 1 0.1

 × × ×
  =
 − − × − × − × −
 

On the basis of the definition 6−7, we shall give some other aggregating operators with 
q-ROFNs.



90 Z. Li et al. EDAS method for multiple attribute group decision making under q-rung orthopair ...

Definition 8. Let ( , )( 1,2, , )
l ll M MM l n= µ ν =   be a set of q-ROFNs, and q-rung orthopair 

fuzzy OWA (q-ROFOWA) operator is defined:

 
( ) ( ) ( ) ( )1 2 1 21 2q-ROFOWA , , , n n nM M M M M Mθ ρ ρ ρ= θ ⊕θ ⊕ ⊕θ = 

               
( ) ( )

1 1

1 1 , ,
l

l

l l

n nq
q

M M
l l

ρ ρ

θ θ

= =

 
     − − µ ν            

 
∏ ∏   (11) 

where ( )1 2, , , T
nθ = θ θ θ

 is the position weights, with 0,1lM ∈   ( )1,2, ,l n=   and 

1

1
n

l
l=

θ =∑  , and ( ) ( ) ( )( )1 , 2 , , nρ ρ ρ  is a permutation of ( )1,2, ,n , such that ( ) ( )1l lM Mρ − ρ>  , 

for any l. 

Definition 9. Let ( , )( 1,2, , )
l ll M MM l n= µ ν =   be a set of q-ROFNs, and q-rung orthopair 

fuzzy OWG (q-ROFOWG) operator is defined:

 
( ) ( ) ( ) ( )

1 2
1 2 1 2q-ROFOWG , , , n

n nM M M M M Mθθ θ
θ ρ ρ ρ

= ⊗ ⊗ ⊗ = 

                    
( ) ( )

1 1

, 1 1 ,
l

l

l l

n n q
q

M M
l l

ρ ρ

θθ

= =

 
     µ − − ν            

 
∏ ∏   (12)

where ( )1 2, , , T
nθ = θ θ θ

is the position weights, with 0,1lM ∈   ( )1,2, ,l n= 
 and 

1

1
n

l
l=

θ =∑  , 

and ( ) ( ) ( )( )1 , 2 , , nρ ρ ρ  is a permutation of ( )1,2, ,n , such that ( ) ( )1l lM Mρ − ρ> , for any l. 

Example 3. Let ( )1 0.7,0.2M = , ( )2 0.6,0.5M = , ( )3 0.9,0.3M = , ( )4 0.8,0.4M =  be four q-
ROFNs, according to Definitions 2−3, we can get (q = 3):

( ) 3 3
1 0.7 0.2 0.3350S M = − = , ( ) 3 3

2 0.6 0.5 0.0910S M = − = , 

( ) 3 3
3 0.9 0.3 0.7020S M = − = , ( ) 3 3

4 0.8 0.4 0.4480S M = − = .

Since ( ) ( ) ( ) ( )3 4 1 2S M S M S M S M> > > , we have ( ) ( )1 0.9,0.3Mρ = , ( ) ( )2 0.8,0.4Mρ = , 

( ) ( )3 0.7,0.3Mρ = , ( ) ( )4 0.6,0.5Mρ =  and ( )0.3,0.1,0.2,0.4θ = is the weighted vector associ-
ated with the q-ROFOWA and q-ROFOWG operators. Then, according to Definitions 8–9, 
we can get:

( ) ( ) ( )

4 43
31 2 3 4

1 1

q-ROFOWA , , , 1 1 , 1
l

l

l lM M
l l

M M M M
ρ ρ

θ θ

θ
= =

 
     = − − µ −µ =            

 
∏ ∏

( ) ( ) ( ) ( ) ( )
0.3 0.1 0.2 0.43 3 3 33

0.3 0.1 0.2 0.4

1 1 0.9 1 0.8 1 0.7 1 0.6 , 0.7804,0.3788 ;
0.3 0.4 0.3 0.5

 
− − × − × − × −  =

 × × × 

( ) ( ) ( )

4 4 3
31 2 3 4

1 1

q-ROFOWG , , , , 1 1
l

l

l lM M
l l

M M M M
ρ ρ

θθ

θ
= =

 
     = µ − − ν =            

 
∏ ∏

( ) ( ) ( ) ( ) ( )
0.3 0.1 0.2 0.4

0.3 0.1 0.2 0.43 3 3 33

0.9 0.8 0.7 0.6 ,
0.7192,0.4142 .

1 1 0.3 1 0.4 1 0.3 1 0.5

 × × ×
  =
 − − × − × − × −
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From above, we know that q-ROFWA and q-ROFWG operators only take into account 
the weight of the q-ROFNs, and the q-ROFOWA and q-ROFOWG operators only considers 
the ordered positions. To consider both weight of the q-ROFNs and the ordered positions, 
then, we now define q-rung orthopair fuzzy hybrid aggregation (q-ROFHA) and q-rung 
orthopair fuzzy hybrid geometric (q-ROFHG) operators.

Definition 10. Let ( , )( 1,2, , )
l ll M MM l n= µ ν =   be a set of q-ROFNs, and q-ROFHA, then 

 
( ) ( ) ( ) ( ), 1 2 1 21 2q-ROFHA , , , n n nM M M X X Xθ ϑ ρ ρ ρ= θ ⊕θ ⊕ ⊕θ = 

                 ( ) ( )
1 1

1 1 , ,
l

l

l l

n nq
q

X X
l l

ρ ρ

θ θ

= =

 
     − − µ ν            

 
∏ ∏   (13)

where ( )1 2, , , T
nθ = θ θ θ is the position weights, with ( )0,1 1,2, ,l l nθ ∈ =   

 and 
1

1
n

l
l=

θ =∑ , 

l l lX n M= ϑ , ( )1,2, ,l n= 
, and ( ) ( ) ( )( )1 2, , , nX X Xρ ρ ρ  is a permutation of a set of the weight-

ed q-ROFNs ( ) ( ) ( )( )1 2, , , nX X Xρ ρ ρ , such that ( ) ( )1l lX Xρ − ρ> , for any l; ( )1 2, , , T
nϑ = ϑ ϑ ϑ  

is the weight vector of ( )1,2, ,lM l n=  , with 0,1lϑ ∈   ( )1,2, ,l n=   and
1

1
n

l
l=

ϑ =∑ , and n 
is the balancing coefficient. 

Definition 11. Let ( , )( 1,2, , )
l ll M MM l n= µ ν =   be a set of q-ROFNs, and q-ROFHG is 

defined:

 
( ) ( ) ( ) ( )

1 2
, 1 2 1 2q-ROFHG , , , n

n nM M M Y Y Y θθ θ
θ ϑ ρ ρ ρ

= ⊗ ⊕ ⊕ = 

                  
( ) ( )

ˆ ˆ
1 1

, 1 1 ,
l

l

l l

qn n
q

M M
l l

ρ ρ

θθ

= =

 
      µ − − ν          

 

∏ ∏                (14)

where θ = ( )1 2, , , T
nθ θ θ

 is position weights, with ( )0,1 1,2, ,l l nθ ∈ =   
and

1

1
n

l
l=

θ =∑ , 
 ln

l lY M ϑ= , ( )1,2, ,l n=  , and ( ) ( ) ( )( )1 2, , , nY Y Yρ ρ ρ
 is a permutation of a set of the weight-

ed q-ROFNs ( ) ( ) ( )( )1 2, , , nY Y Yρ ρ ρ , such that ( ) ( )1l lY Yρ − ρ> , for any l; ( )1 2, , , T
nϑ = ϑ ϑ ϑ  is 

the weight vector of ( )1,2, ,lM l n=  , with 0,1lϑ ∈   ( )1,2, ,l n=   and 
1

1
n

l
l=

ϑ =∑ , and n is 
the balancing coefficient. 

Obviously, from Definition 10−11, we know that the q-ROFHA operator and q-ROFHG 
operator consists of the following computational steps.

1) First, we give the corresponding weight ( )1,2, ,l l nϑ =   to the q-ROFNs  ( )1,2, ,lM l n=   , 
and get l lMϑ  or l

lMϑ
, then multiply these values by the balance coefficient n, and get 

l ln Mϑ  or 
n l
lM ϑ

.

2) Secondly, we reorder the weighted q-ROFNs l l lX n M= ϑ  or ( )1,2, ,n
l lY M l nϑ= =   in 

descending order ( ) ( ) ( )( )1 2, , , nX X Xρ ρ ρ  or ( ) ( ) ( )( )1 2, , , nY Y Yρ ρ ρ , where ( )lXρ  is the 

l-th largest of ( )1,2, ,l ln M l nϑ =  , and ( )lYρ  is the l-th largest of  n
lM ϑ.
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3) Finally, the ( )lXρ  or ( )lYρ  is weighted by the ordered weights ( )0,1 1,2, ,l l nθ ∈ =   
, 

and then aggregate all the weighted q-ROFNs ( )l lXρθ  or ( )( ) l

lY
θ

ρ  into the collective 
ones.

From the above analysis, we can know that: (1) q-ROFWA and q-ROFOWA operators 
are special cases of q-ROFHA operator; q-ROFWG and q-ROFOWG operators are special 
cases of the q-ROFHG operator. (2) The q-ROFHA operator generalizes q-ROFWA and q-
ROFOWA operators; the q-ROFHG operator generalizes q-ROFWG and q-ROFOWG opera-
tors. (3) The advantages of the q-ROFHA operator and the q-ROFHG operator are that they 
consider not only the importance of the given q-ROFNs themselves but also the ordered 
positions of the given q-ROFNs.

Example 4. Let ( )1 0.7,0.2M = , ( )2 0.6,0.3M = , ( )3 0.9,0.1M = , ( )4 0.8,0.2M = , ( )5 0.3,0.7M =  

be five q-ROFNs (q  = 3), and ( )= 0.14, 0.20, 0.16, 0.30, 0.20
T

ϑ  is the weight vector of 
( )1,2,3,4,5lM l = . According to Definitions 10, we can get the weighted q-ROFNs:

( ) ( ) ( )5 0.14 5 0.1433
1 15 0.14 1 1 0.7 , 0.2 0.6062,0.3807 ;X M

× × 
= × × = − − = 

 

( ) ( ) ( )5 0.2 5 0.233
2 25 0.2 1 1 0.6 , 0.3 0.6000,0.3000 ;X M

× × 
= × × = − − = 

 

( ) ( ) ( )5 0.16 5 0.1633
3 35 0.16 1 1 0.9 , 0.1 0.8842,0.1259 ;X M

× × 
= × × = − − = 

 

( ) ( ) ( )5 0.3 5 0.333
4 45 0.3 1 1 0.8 , 0.2 0.8703,0.0894 ;X M

× × 
= × × = − − = 

 

( ) ( ) ( )5 0.2 5 0.233
5 55 0.2 1 1 0.3 , 0.7 0.3000,0.7000 .X M

× × 
= × × = − − = 

 
According to Definitions 2, we can get the score of ( )1,2,3,4,5lX l = :

( )1 0.1676S X = , ( )2 0.1890S X = , ( )3 0.6892S X = , ( )4 0.6584S X = , ( )5 0.3160S X = − .

Since ( ) ( ) ( ) ( ) ( )3 4 2 1 5S X S X S X S X S X> > > >

we have 

( ) ( )1 0.8842,0.1259Xρ = , ( ) ( )2 0.8703,0.0894Xρ = , ( ) ( )3 0.6000,0.3000Xρ = ,

( ) ( )4 0.6062,0.3807Xρ = , ( ) ( )5 0.3000,0.7000Xρ = .

Suppose that ( )0.20,0.15,0.25,0.30,0.10 Tθ =  is the weight of q-ROFHA operator. Then, 
according to Definitions 10, we can get:

( ) ( ) ( )

5 53
3, 1 2 3 4 5

1 1

q-ROFHA , , , , 1 1 ,
l

l

l lX X
l l

M M M M M
ρ ρ

θ θ

θ ϑ
= =

 
     = − − µ ν =            

 
∏ ∏

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

0.20 0.153 3
3 0.25 0.30 0.103 3 3

0.20 0.15 0.25 0.30 0.10

1 1 0.8842 1 0.8703
,

0.7569,0.2459 .1 0.6000 1 0.6062 1 0.3000

0.1259 0.0894 0.3000 0.3807 0.7000

 
− − × − × 

  =− × − × − 
  × × × × 
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Meantime, according to Definitions 11, we can get the weighted q-ROFNs:

( ) ( ) ( )5 0.145 0.145 0.14 33
1 1 0.7 , 1 1 0.2 0.8073,0.1688 ;Y M

×××  
= = − − = 

 

( ) ( ) ( )5 0.25 0.25 0.2 33
2 2 0.6 , 1 1 0.3 0.6000,0.3000 ;Y M

×××  
= = − − = 

 

( ) ( ) ( )5 0.165 0.165 0.16 33
3 3 0.9 , 1 1 0.1 0.9095,0.0966 ;Y M

×××  
= = − − = 

 

( ) ( ) ( )5 0.35 0.35 0.3 33
4 4 0.8 , 1 1 0.2 0.7155,0.2288 ;Y M

×××  
= = − − = 

 

( ) ( ) ( )5 0.25 0.25 0.2 33
5 5 0.3 , 1 1 0.7 0.3000,0.7000 .Y M

×××  
= = − − = 

 
According to Definitions 2, we can get the score of ( )1,2,3,4,5lY l = :

( ) ( ) ( ) ( ) ( ),1 2 3 4 50.5214 0.1890, 0.7512, 0.3544, 0.3160S Y S Y S Y S Y S Y= = = = = − . 

Since ( ) ( ) ( ) ( ) ( )3 1 4 2 5S Y S Y S Y S Y S Y> > > > .
We have:

( ) ( )1 0.9095,0.0966Yρ = , ( ) ( )2 0.8703,0.1688Yρ = , ( ) ( )3 0.7155,0.2288Yρ = ,

( ) ( )4 0.6000,0.3000Yρ = , ( ) ( )5 0.3000,0.7000Yρ = .

Suppose that ( )0.20,0.15,0.25,0.30,0.10 Tθ =  is the weight of q-ROFHG operator. Then, 
according to Definitions 11, we can get:

( ) ( ) ( )

5 5 3
3, 1 2 3 4 5

1 1

q-ROFHG , , , , , 1 1
l

l

l lY Y
l l

M M M M M
ρ ρ

θθ

θ ϑ
= =

 
     = µ − − ν =            

 
∏ ∏

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

0.20 0.15 0.25 0.30 0.10

0.20 0.153 3
3 0.25 0.30 0.103 3 3

0.9095 0.8703 0.7155 0.6000 0.3000

0.5576,0.4988 .1 1 0.0966 1 0.1688

1 0.2288 1 0.3000 1 0.7000

 × × × × 
  =− − × − × 
 − × − × − 
 

2. EDAS method for MAGDM with q-ROFNs

Let ( )1 2, , , mT T T T=   be a set of alternatives, ( )1 2, , , nX X X X=   be a group of attri-

butes and k experts{ }1 2, , , kf f f . Let ( )1 2, , , T
nϑ = ϑ ϑ ϑ  be the attributes’ weighting vec-

tor, { }1 2, , , kρ = ρ ρ ρ  be the experts’ weighting vector, where ( )0,1 1,2, ,h h nϑ ∈ =     , 

( )0,1 1,2, ,i i kρ ∈ =     and 
1

1,
n

h
h=

ϑ =∑
1

1.
k

i
i=

ρ =∑  Assume that the attributes Xh with  

respect to alternative Tl are assessed by expert fi with q-ROFN ( )( ), 1,2, , , 1,2, , , 1,2, , .i i i
hl hl hle h n l m i k= µ ν = = =  

( )( ), 1,2, , , 1,2, , , 1,2, , .i i i
hl hl hle h n l m i k= µ ν = = =  
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On the basis of the conventional EDAS method, the EDAS method for MAGDM with 
q-ROFNs is proposed. The specific steps are as below:

Step 1: Building the evaluation matrix 

, 1,2, , , 1,2, , , 1,2, , .i i
hl n m

E e h n l m i k
×

 = = = =    

Step 2: According to q-ROFHA or q-ROFHG operator, we can get overall matrix

( ) ( ), , 1,2, , , 1,2, , .hl hl hln m n m
E e h n l m

× ×
= = µ ν = = 

Step 3: Determine the AS of all the alternatives under each attribute.

 ( )1 2AS AS ,AS , ,AS ,n=    (15)

where ( ) 1 2
1 1 1AS ,h h h h h hme e e
m m m

= µ ν = ⊕ ⊕ ⊕ =

( )( ) ( ) ( )
1 1

1 1

1 1 , 1,2, , .
m m

q mq mhl hl
l l

h n
= =

 
 − − µ ν = 
 
 

∏ ∏ 

Step 4: According to different types of attributes, calculate the PDAS matrix and the NDAS 
matrix.

     ( )PDAS PDAShl n m×= , ( )NDAS NDAShl n m×= ,

 
( ) ( )( )( )
( )

max 0, AS
PDAS

AS
hl h

hl
h

S e S

S

−
= , 

( ) ( )( )( )
( )

max 0, AS
NDAS ,

AS
h hl

hl
h

S S e

S

−
=   (16)

where ( )hlS e , ( )AShS  is the score function.

Step 5: Compute the positive weighted distance ( )SP 1,2, ,l l m=   and the negative weight-
ed distance ( )SN 1,2, ,l l m=  :

 
1

SP PDAS
n

l h hl
h=

= ϑ∑ , 
1

SN NDAS ,
n

l h hl
h=

= ϑ∑   (17)

where 0,1hϑ ∈  , 
1

1
n

h
h=

ϑ =∑ .

Step 6: Normalize the ( )SP 1,2, ,l l m=   and ( )SN 1,2, ,l l m=   by following equations:

 ( )1 2

SP
NSP

max SP ,SP , ,SP
l

l
m

=


, 
( )1 2

SN
NSN

max SN ,SN , ,SN
l

l
m

=


,  (18)

where ( )1 2max SP ,SP , ,SPm  and ( )1 2max SN ,SN , ,SNm  are the maximum distance.

Step 7: Derive the integrative appraisal score ( )( )IAS 1,2, ,l l m=   according to equa-
tion (19):
 ( )1IAS NSP 1 NSN ,

2l l l= + −   (19)

where IAS 0,1l ∈   .

Step 8: Derive the ordering in accordance with the results of ( )IAS 1,2, ,l l m=  . The larger 
( )IAS 1,2, ,l l m=  , the better the alternative is.
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3. Case analysis

With development of social and improvement of peoples’ living standards, the household 
refrigerator becomes a necessary appliance. The household refrigerator can provide the low 
temperature for saving food and simultaneously it consumes a lot of energy during 24-hour 
running. Improving refrigerator performance, not only can contribute to electricity saving for 
families, but also contributes to the national advocated motivation of energy-saving emission 
reduction and low-carbon, even contribute to the environment sustainability. Therefore, it is 
very important for potential customers to make an overall evaluation of alternative refrigera-
tor through qualitative reviews. To facilitate consumer purchase decisions, ranking the alter-
native refrigerator based on EDAS method is a worthy research topic which is also regards 
as a classical MAGDM problem. Let us consider a customer who wants to buy a refrigerator. 
There are five kinds of possible refrigerators ( )1,2,3,4,5lT l =  are available. The customer 
pay attention to six attributes to decide which kind of refrigerator to buy:(1) X1-safety, (2) 
X2-refrigeration performance, (3) X3-design, (4) X4-reliability, (5) X5-economic, (6) X6-aes-
thetics. All these attributes are beneficial attributes and ( )0.20,0.15,0.25,0.17,0.13,0.10ϑ =  
is the weight of ( )1,2,3,4,5,6hX h = . Three experts evaluate the refrigerator ( )1,2,3,4,5lT l =  
in accordance with ( )1,2,3,4,5,6hX h =  by q-ROFNs, and form the decision matrix with q-
ROFNs (see Tables 1−3), and expert weighting vector is ( )= 0.3,0.3,0.4ρ .

Table 1. Decision matrix with q-ROFNs by the first expert

T1 T2 T3 T4 T5

X1 (0.7,0.6) (0.3,0.4) (0.4,0.3) (0.7,0.3) (0.6,0.3)
X2 (0.6,0.4) (07,0.5) (0.5,0.3) (0.6,0.2) (0.4,0.3)
X3 (0.5,0.3) (0.6,0.3) (0.4,0.2) (0.6,0.4) (0.5,0.4)
X4 (0.4,0.2) (0.7,0.4) (0.6,0.3) (0.2,0.5) (0.5,0.3)
X5 (0.5,0.4) (0.6,0.3) (0.4,0.2) (0.3,0.4) (0.4,0.4)
X6 (0.5,0.4) (0.8,0.4) (0.6,0.4) (0.4,0.3) (0.4,0.3)

Table 2. Decision matrix with q-ROFNs by the second expert

T1 T2 T3 T4 T5

X1 (0.7,0.5) (0.6,0.4) (0.4,0.3) (0.5,0.2) (0.5,0.3)
X2 (0.6,0.4) (0.7,0.5) (0.5,0.3) (0.5,0.4) (0.4,0.3)
X3 (0.5,0.3) (0.6,0.3) (0.5,0.1) (0.7,0.3) (0.5,0.4)
X4 (0.4,0.2) (0.7,0.4) (0.6,0.3) (0.2,0.6) (0.5,0.3)
X5 (0.5,0.3) (0.7,0.3) (0.4,0.2) (0.3,0.5) (0.4,0.4)
X6 (0.4,0.2) (0.5,0.2) (0.6,0.4) (0.4,0.3) (0.4,0.3)
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Table 3. Decision matrix with q-ROFNs by the third expert

T1 T2 T3 T4 T5

X1 (0.5,0.3) (0.6,0.4) (0.4,0.3) (0.4,0.2) (0.5,0.3)
X2 (0.6,0.4) (0.4,0.2) (0.5,0.3) (0.6,0.4) (0.4,0.3)
X3 (0.5,0.3) (0.6,0.3) (0.7,0.5) (0.6,0.3) (0.5,0.4)
X4 (0.4,0.2) (0.7,0.4) (0.7,0.3) (0.6,0.2) (0.5,0.3)
X5 (0.5,0.3) (0.6,0.3) (0.6,0.3) (0.3,0.5) (0.4,0.2)
X6 (0.4,0.2) (0.5,0.4) (0.6,0.4) (0.4,0.3) (0.5,0.2)

Algorithm one: 

If we use the q-ROFHA operator to fuse the given q-ROFNs, we can derive the aggregating 
collective matrix (see Table 4) and the position weight is w = (0.2, 0.5, 0.3).

Table 4. The aggregating matrix by q-ROFHA operator (q = 3)

T1 T2 T3 T4 T5

X1 (0.6180,0.3734) (0.5438,0.4149) (0.3948,0.3148) (0.5283,0.2186) (0.5460,0.3148)
X2 (0.5928,0.4149) (0.6304,0.3620) (0.4937,0.3148) (0.5693,0.3037) (0.3948,0.3148)
X3 (0.4937,0.3148) (0.5928,0.3148) (0.5470,0.1945) (0.6297,0.3053) (0.4937,0.4149)
X4 (0.3948,0.2133) (0.6923,0.4149) (0.5225,0.3148) (0.3961,0.4334) (0.4937,0.3148)
X5 (0.4937,0.3402) (0.5925,0.3036) (0.4651,0.2623) (0.2960,0.4649) (0.3948,0.3513)
X6 (0.4281,0.2572) (0.6014,0.3169) (0.5928,0.4149) (0.3948,0.3148) (0.4247,0.2856)

Step 1: According to Table 4, we can compute ( )AS 1,2,3,4,5,6h h =  of every attributes.

( )1AS 0.5378,0.3200= , ( )2AS 0.5514,0.3397= , ( )3AS 0.5583,0.3003= , 

( )4AS 0.5314,0.3281= , ( )5AS 0.4725,0.3382= , ( )6AS 0.5083,0.3138 .=

Step 2: Compute the score values of ( )AS 1,2,3,4,5,6h h = .

( )1AS 0.1228S = , ( )2AS 0.1285S = , ( )3AS 0.1470S = ,

( )4AS 0.1147S = , ( )5AS 0.0668S = , ( )6AS 0.1004.S =

Then, we can obtain the score of Table 4 (see Table 5) based on definition 2.

Table 5. The score matrix

T1 T2 T3 T4 T5

X1 0.1840 0.0894 0.0303 0.1370 0.1316
X2 0.1369 0.2031 0.0891 0.1565 0.0303
X3 0.0891 0.1771 0.1563 0.2212 0.0489
X4 0.0518 0.2604 0.1114 –0.0193 0.0891
X5 0.0.810 0.1800 0.0826 –0.0745 0.0182
X6 0.0614 0.1857 0.1369 0.0303 0.0533

http://www.baidu.com/link?url=487iCmTtFzAj9vMOGmu9H1sEt7hchv6zszzDSyYv-Z2RkptFUNu-6blSL-WAi879owr7BeX4ZkHRUJT8ZpOW_ho5px3CZXSL1iLuNsGNlvW
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Step 3: According to score values, compute the PDAS (Table 6) and the NDAS (Table 7).

Table 6. The PDAS matrix

0.4986 0.0000 0.0000 0.1160 0.0718
0.0654 0.5805 0.0000 0.2180 0.0000
0.0000 0.2052 0.0636 0.5054 0.0000
0.0000 1.2691 0.0000 0.0000 0.0000
0.2124 1.6958 0.2364 0.0000 0.0000
0.0000 0.8492 0.3633 0.0000 0.0000

Table 7. The NDAS matrix

0.0000 0.2718 0.7529 0.0000 0.0000
0.0000 0.0000 0.3063 0.0000 0.7639
0.3935 0.0000 0.0000 0.0000 0.6672
0.5483 0.0000 0.0288 1.1679 0.2232
0.0000 0.0000 0.0000 2.1163 0.7277
0.3881 0.0000 0.0000 0.6979 0.4691

Step 4: Compute the positive weighted distance ( )SP 1,2,3,4,5l l = and the negative weighted 
distance ( )SN 1,2,3,4,5l l = , where ( )0.20,0.15,0.25,0.17,0.13,0.10ϑ = ,

1SP 0.1371= , 2SP 0.6595= , 3SP 0.0830= , 4SP 0.1823= , 5SP 0.0144= ;

1SN 0.2304= , 2SN 0.0544= , 3SN 0.2014= , 4SN 0.5434= , 5SN 0.4608= .

Step 5: Normalize the values of ( )SP 1,2,3,4,5l l =  and ( )NP 1,2,3,4,5l l = :

1NSP 0.2079= , 2NSP 1.0000= , 3NSP 0.1258= , 4NSP 0.2763= , 5NSP 0.0218= ;

1NSN 0.4239= , 2NSN 0.1000= , 3NSN 0.3706= , 4NSN 1.0000= , 5NSN 0.8480= .

Step 6: Compute the values of ( )IAS 1,2,3,4,5l l = :

1IAS 0.3920= , 2IAS 0.9500= , 3IAS 0.3776= , 4IAS 0.1382= , 5IAS 0.0869= .

Step 7: Derive the ordering of ( )IAS 1,2,3,4,5l l = : 2 1 3 4 5IAS IAS IAS IAS IAS> > > > . We 
have: 2 1 3 4 5T T T T T> > > > . Thus, the best refrigerator is T2.

Algorithm two:

If we use the q-ROFHG operator to fuse the given q-ROFNs, we can derive the aggregating 
matrix (Table 8) and the position weight is w = (0.2, 0.5, 0.3).

http://www.baidu.com/link?url=487iCmTtFzAj9vMOGmu9H1sEt7hchv6zszzDSyYv-Z2RkptFUNu-6blSL-WAi879owr7BeX4ZkHRUJT8ZpOW_ho5px3CZXSL1iLuNsGNlvW
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Table 8. The aggregating matrix by q-ROFHG operator (q = 3)

T1 T2 T3 T4 T5

X1 (0.6224,0.5112) (0.4850,0.4063) (0.4037,0.2990) (0.4936,0.2248) (0.5203,0.2990)
X2 (0.6031,0.3987) (0.5743,0.4368) (0.5035,0.2990) (0.5556,0.3769) (0.4037,0.2990)
X3 (0.5036,0.2990) (0.6031,0.2990) (0.5565,0.4294) (0.6200,0.3519) (0.5035,0.3987)
X4 (0.4037,0.1993) (0.7025,0.3987) (0.6355,0.2960) (0.2777,0.4931) (0.5035,0.2990)
X5 (0.5035,0.3519) (0.5807,0.2990) (0.4573,0.2592) (0.3036,0.4837) (0.4149,0.3643)
X6 (0.4202,0.2632) (0.5479,0.3379) (0.6031,0.3987) (0.4037,0.2990) (0.4378,0.2776)

Step 1: According to Table 8, we can compute the ( )AS 1,2,3,4,5,6h h =  under each attribute

( )1AS 0.5173,0.3343= , ( )2AS 0.5388,0.3578= , ( )3AS 0.5629,0.3518= , 

( )4AS 0.5570,0.3221= , ( )5AS 0.4725,0.3438= , ( )6AS 0.4982,0.3117 .=

Step 2: Obtain the score values of ( )AS 1,2,3,4,5,6h h = .

( )1AS 0.1011S = , ( )2AS 0.1106S = , ( )3AS 0.1348S = ,

( )4AS 0.1394S = , ( )5AS 0.0649S = , ( )6AS 0.0934S = .

Then, we can obtain the score results of Table 8 (see Table 9) based on definition 2.

Table 9. The score results matrix 

T1 T2 T3 T4 T5

X1 0.1075 0.0470 0.0391 0.1089 0.1141
X2 0.1560 0.1061 0.1009 0.1180 0.0391
X3 0.1010 0.1926 0.0932 0.1948 0.0643
X4 0.0579 0.2833 0.2307 -0.0985 0.1009
X5 0.0841 0.1691 0.0782 -0.0852 0.0231
X6 0.0560 0.1259 0.1560 0.0391 0.0391

Step 3: According to score values, compute the PDAS (Table 10) and NDAS matrix (Ta-
ble 11).

Table 10. The PDAS matrix

0.0637 0.0000 0.0000 0.0000 0.7596
0.5432 0.0000 0.0000 0.0000 0.0000
0.0000 0.7420 0.0000 0.3973 0.0000
0.0000 1.5620 0.7112 0.0000 0.5559
0.0000 0.5291 0.0000 0.0000 0.0000
0.0000 0.1385 0.1569 0.0000 0.0000
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Table 11. The NDAS matrix

0.0000 0.5749 0.7103 0.2187 0.0000 
0.2820 0.0407 0.2516 0.1536 0.3977
0.0009 0.0000 0.3090 0.0000 0.0091
0.4274 0.0000 0.0000 1.7066 0.0000 
0.1683 0.0000 0.4199 1.6112 0.6442
0.4464 0.0000 0.0000 0.7197 0.0360 

Step 4: Compute the positive weighted distance ( )SP 1,2,3,4,5l l = and the negative weighted 
distance ( )SN 1,2,3,4,5l l = , where ( )0.20,0.15,0.25,0.17,0.13,0.10ϑ = ,

1SP 0.1380= , 2SP 0.4662= , 3SP 0.1184= , 4SP 0.0556= , 5SP 0.1690= ;

1SN 0.1539= , 2SN 0.0788= , 3SN 0.2896= , 4SN 0.7751= , 5SN 0.2557= .

Step 5: Normalize the results of ( )SP 1,2,3,4,5l l =  and ( )SN 1,2,3,4,5l l = :

1NSP 0.2960= , 2NSP 1.0000= , 3SNP 0.2540= , 4NSP 0.1193= , 5NSP 0.3625= ;

1NSN 0.1986= , 2NSN 0.1016= , 3NSN 0.3737= , 1NSN 1.0000= , 5NSN 0.3299= .

Step 6: Derive the results of ( )IAS 1,2,3,4,5l l = :

1IAS 0.5487= , 2IAS 0.9492= , 3IAS 0.4401= , 4IAS 0.0597= , 5IAS 0.5163=  

Step 7: Derive the ordering of ( )IAS 1,2,3,4,5l l = : 2 1 5 3 4IAS IAS IAS IAS IAS> > > > . We 
have: 2 1 5 3 4T T T T T> > > > . Thus, the best refrigerator is also T2.

4. Compared with exiting MAGDM methods

To testify the advantages and effectiveness of q-ROF-EDAS method, we compare this method 
with some operators (Liu & Wang, 2018). According to the results of Table 1 and the attri-
butes weight ( )0.20,0.15,0.25,0.17,0.13,0.10ϑ = , we can compute the ranking of alternatives 
by these operators are listed in Table 12. 

Table 12. Ranking of alternatives by the some operators

Methods The scoring function Order

q-ROFWA operator  
(Liu & Wang, 2018) 

1 0.1246S = , 2 0.1986S = , 3 0.1462S = ,

4 0.1364S = , 5 0.0786S = 2 3 4 1 5T T T T T> > > >

q-ROFWG operator  
(Liu & Wang, 2018) 

1 0.0811S = , 2 0.1445S = , 3 0.0974S = ,

4 0.0581S = , 5 0.0653S = 2 3 1 5 4T T T T T> > > >

q-ROF-EDAS method 
with q-ROFHA operator 

1IAS 0.3920= , 2IAS 0.9500= , 3IAS 0.3776= ,

4IAS 0.1382= , 5IAS 0.0869= 2 1 3 4 5T T T T T> > > >

q-ROF-EDAS method 
with q-ROFHG operator 

1IAS 0.5487= , 2IAS 0.9492= , 3IAS 0.4401= ,

4IAS 0.0597= , 5IAS 0.5163= 2 1 5 3 4T T T T T> > > >
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Comparing the results of the q-ROF-EDAS method with some existing operators, the 
aggregation results are slightly different. However, the best alternative is same. q-ROF-EDAS 
method has the precious characteristics of considering the conflicting attributes. And com-
pared with other MAGDM methods, EDAS method has required fewer computations, al-
though it results in the same best alternative. EDAS method is proposed based on the dis-
tance measure from the average solution unlike TOPSIS and VIKOR methods.

Conclusions

The q-ROFS provides a new way to accept information and make decisions. Its flexibility and 
convenience are more and more important in complex group decision making, with broad 
development prospects and far-reaching social significance. In our manuscript, we build the 
q-ROF-EDAS method for MAGDM. The specific content is as below: (1)Firstly, we review 
some basic knowledge of q-ROFNs. (2)Next, based on the q-ROFSs, we review and propose 
some aggregation operators, for example, q-ROFWA operator, q-ROFWG operator, q-RO-
FOWA operator, q-ROFOWG operator, q-ROFHA operator and q-ROFHG operator. (3)The 
q-ROFSs are a complex form of information expression. How to apply it effectively to our 
real society is a difficult problem. At present, the application on q-fuzzy sets is still relatively 
limited. In our manuscript, we build the q-rung orthopair fuzzy EDAS model for MAGDM 
and develop the computing steps for MAGDM problem with q-ROFNs. (4) Finally, in order 
to depict the effectiveness of proposed method, an example of purchasing refrigerator in case 
of sudden power failure is given. Moreover, to show the merits of this new model in detail, 
we compare proposed method with some existing methods. In our developed opproach, it’s 
more accuracy and useful to consider the conflicting attributes.

Turning a complex, uncertain piece of information into an intuitive, easily-acceptable 
message is a very complicated task. In the future, more scholars will explore and expand to 
enrich the content of the q-ROFS and the q-ROF-EDAS method under other MAGDM and 
many other uncertain and fuzzy environments.
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