A cellular automata model for monitoring and simulating urban land use/cover changes toward sustainability

    Ali Khatibi Info
    Sharareh Pourebrahim Info
    Afshin Danehkar Info
DOI: https://doi.org/10.3846/16486897.2017.1284666

Abstract

This study presents an integrated model based on cellular automata for assessing and simulating land use/cover changes and their impact on the environment. Satellite images from Landsat TM and ETM + sensors from the time period of 1985 to 2014 were applied. Seven static and five dynamic variables were applied. These included elevation, slope, aspect, soil salinity, soil texture, distance from rivers, and roads, and distance from the five classes of land use. The model was validated by a fuzzy reciprocal similarity method. The results showed that this model is suitable for simulating changes in periods of less than 15 years and patches with areas greater than 25 hectares. The model was run for 15 years, beginning with the year 2014. The results for the study area predict that settlement areas will expand; agricultural land, rangeland and barren areas will decline; and forests will remain unchanged until 2029.

Keywords:

simulation, cellular automata, land use/cover change, land use planning, remote sensing, GIS

How to Cite

Khatibi, A., Pourebrahim, S., & Danehkar, A. (2018). A cellular automata model for monitoring and simulating urban land use/cover changes toward sustainability. Journal of Environmental Engineering and Landscape Management, 26(1), 1-7. https://doi.org/10.3846/16486897.2017.1284666

Share

Published in Issue
March 20, 2018
Abstract Views
1599

References

Ahadnejad-Roushti, M.; Zolfi, A.; Shokripour, H. 2011. Assessing and predicting physical urban growth using multi time satellite images and GIS (case study: Ardebil city 1984–2022), Journal of Environmental Assessment 15: 107–124.

Alphan, H.; Derse, M. A. 2013. Change detection in Southern Turkey using normalized difference vegetation index (NDVI), Journal of Environmental Engineering and Landscape Management 21(1): 12–18. <a target="_blank" href= "https://doi.org/10.3846/16486897.2012.663091 "> https://doi.org/10.3846/16486897.2012.663091</a>

Alphan, H; Guvensoy, L. 2016. Detecting coastal urbanization and land use change in southern Turkey, Journal of Environmental Engineering and Landscape Management 24(2): 97–107. <a target="_blank" href= "https://doi.org/10.3846/16486897.2015.1113976 "> https://doi.org/10.3846/16486897.2015.1113976</a>

Bellinger, G. 2004. Modeling & simulation: an introduction [online], [cited 6 January 2015]. Available from Internet: <a target="_blank" href= "http://www.systems-thinking.org/modsim/modsim.htm "> http://www.systems-thinking.org/modsim/modsim.htm</a>

Benenson, I.; Torrens, P. M. 2004. Geosimulation: Automata–based modelling of urban phenomena. West Sussex: Wiley. 312 p. <a target="_blank" href= "https://doi.org/10.1002/0470020997 "> https://doi.org/10.1002/0470020997</a>

Cheng, J.; Masser, I. 2003. Urban growth modeling: a case study of Wuhan City, PR China, Landscape and Urban Planning 62: 199–217. <a target="_blank" href= "https://doi.org/10.1016/S0169-2046(02)00150-0 "> https://doi.org/10.1016/S0169-2046(02)00150-0</a>

Fisher, P.; Unwin, D. J. 2005. Re–presenting GIS. Wiley, London. 296 p.

Gregorio, A. D.; Jansen, L. J. 2005. Land cover classification system: Classification concepts and use manual [online], [cited 7 January 2015] Available from Internet: <a target="_blank" href= "http://www.fao.org/gtos/doc/ECVs/T09/ECV–T9–landcover–ref25–LCCS.pdf "> http://www.fao.org/gtos/doc/ECVs/T09/ECV–T9–landcover–ref25–LCCS.pdf</a>

Hagen, A. 2003. Fuzzy set approach to assessing similarity of categorical maps, International Journal of Geographical Information Science 17(3): 235–249. <a target="_blank" href= "https://doi.org/10.1080/13658810210157822 "> https://doi.org/10.1080/13658810210157822</a>

Kamusoko, C.; Gamba, J. 2015. Simulating urban growth using a random forest–cellular automata (RF–CA) model, ISPRS International Journal of Geo–Information 4(2): 447–470. <a target="_blank" href= "https://doi.org/10.3390/ijgi4020447 "> https://doi.org/10.3390/ijgi4020447</a>

Kucas, A. 2010. Location prioritization by means of multicriteria spatial decision‐support systems: a case study of forest fragmentation‐based ranking of forest administrative areas, Journal of Environmental Engineering and Landscape Management 18(4): 312–320. <a target="_blank" href= "https://doi.org/10.3846/jeelm.2010.36 "> https://doi.org/10.3846/jeelm.2010.36</a>

KwadwoNti, I. 2013. geospatial process modelling for land use cover change: PhD thesis. Auckland University of Technology. 216 p
.
Makhdoom, M.; Darvishsefat, A. A.; Jafarzadeh, H.; Makhdoom, A. 2001. Environmental assessment and planning by using GIS. University of Tehran press. 304 p. (in Persian).

Mas, J.; Paegelow, M.; De Jong, B.; Masera, O.; Guerrero, G.; Follador, M.; Olguin, M.; Diaz, J. R.; Castillo, M. A.; Garcia, T. 2007. Modelling tropical deforestation: a comparison of approaches, in 32rd Symposium on Remote Sensing of Environment, June 2007, San José, Costa Rica. 3 p. en CD. <a target="_blank" href= "https://halshs.archives-ouvertes.fr/halshs-01063568 "> https://halshs.archives-ouvertes.fr/halshs-01063568</a>

Mcclean, C. J. 1995. Land use planning: a decision support system, Journal of Environmental Planning and Management 38: 77–92. <a target="_blank" href= "https://doi.org/10.1080/09640569513129 "> https://doi.org/10.1080/09640569513129</a>

Ministry of Roads and Urban Development of Iran. 2011. Strategic and structural planning for Karaj city. 194 p.

Pourebrahim S.; Mokhtar, M. B. 2016. Conservation priority assessment of the coastal area in the Kuala Lumpur mega–urban region using extent analysis and TOPSIS, Environmental Earth Science 75: 348–355. <a target="_blank" href= "https://doi.org/10.1007/s12665-016-5276-3 "> https://doi.org/10.1007/s12665-016-5276-3</a>

Pourebrahim, S.; Hadipour, M.; Mokhtar, M. B. 2011. Integration of spatial analysis for land use planning in coastal areas; case of Kuala District, Selangor, Malaysia, Landscape and Urban Planning 101(1): 84–97. <a target="_blank" href= "https://doi.org/10.1016/j.landurbplan.2011.01.007 "> https://doi.org/10.1016/j.landurbplan.2011.01.007</a>

Ramachandra, T. V.; Bharath, S.; Bharath, A. 2014. Spatio-temporal dynamics along the terrain gradient of diverse landscape, Journal of Environmental Engineering and Landscape Management 22(1): 50–63. <a target="_blank" href= "https://doi.org/10.3846/16486897.2013.808639 "> https://doi.org/10.3846/16486897.2013.808639</a>

Sakieh, Y. 2013. Determining of sustainable development index for Karaj city based on urban growth simulation and environment capability: MSc thesis. Faculty of natural resources, University of Tehran. 152 p.

Sheng, J.; Qing, G.; Chun-yu, W.; Bei, L.; Xiao-dong, L.; Guang-ming, Z.; Zhong-xing, Y.; Jie, L. 2012. Ecological suitability evaluation for urban growth boundary in red soil hilly areas based on fuzzy theory, Journal of Central South University 19: 1364–1369. <a target="_blank" href= "https://doi.org/10.1007/s11771-012-1151-x "> https://doi.org/10.1007/s11771-012-1151-x</a>

Soares-Filho, B.; Lima, L.; Bowman, M.; Viana, L. 2012. Challenges for low–carbon agriculture and forest conservation in challenges for low–carbon agriculture and forest conservation in Brazil. Inter-American Development Bank. 40 p.

Soares-Filho, B.; Rodrigues, H.; Costa, W.; Schlesinger, P. 2009. Modeling environmental dynamics with dinamica EGO. Belo Horizonte. 116 p.

Tang, J.; Wang, L.; Yao, Z. 2007. Spatio–temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm, International Journal of Remote Sensing 28(15): 3255–3271. <a target="_blank" href= "https://doi.org/10.1080/01431160600962749 "> https://doi.org/10.1080/01431160600962749</a>

Torre, R. D.; Jimenez, M. D.; Ramirez, A.; Mola, I.; Casado, M. A.; Balaguer, L. 2015. Use of restoration plantings to enhance bird seed dispersal at the roadside: failures and prospects, Journal of Environmental Engineering and Landscape Management 23(4): 302–311. <a target="_blank" href= "https://doi.org/10.3846/16486897.2015.1079529 "> https://doi.org/10.3846/16486897.2015.1079529</a>

Verburg, P. H.; Kok, K.; Pontius, R. G.; Veldkamp, A. 2006. Modeling land–use and cover change, in Land–use and land cover change: local processes and global impacts. Springer-Verlag Germany, Berlin, 117–135. <a target="_blank" href= "https://doi.org/10.1007/3-540-32202-7_5 "> https://doi.org/10.1007/3-540-32202-7_5</a>

Visser, S. 2004. The map comparison KIT: methods, software and applications. Bilthoven. 127 p.

Wolfram, S. 1984. Universality and complexity in cellular automata, Physica 10: 1–35. <a target="_blank" href= "https://doi.org/10.1016/0167-2789(84)90245-8 "> https://doi.org/10.1016/0167-2789(84)90245-8</a>

Yuanjing, Zh.; Binyang, Y.; Ashraf, M. A. 2015. Ecological security pattern for the landscape of mesoscale and microscale land: a case study of the Harbin City center, Journal of Environmental Engineering and Landscape Management 23(3): 192–201. <a target="_blank" href= "https://doi.org/10.3846/16486897.2015.1036872 "> https://doi.org/10.3846/16486897.2015.1036872</a>

Zare-Garizi, A.; Sheykh, V.; Sadaldin, A.; Mahini, A. 2011. Spatio–temporal simulation of forest changes in Chehel Chay basin of Golestan province using combination of cellular automata and Mrkov chain, Journal of Iranian forest research 20(2): 273–285.

Zehtabian, Gh. 2012. National atlas of Iranian desertification. University of Tehran. 255 p.

View article in other formats

CrossMark check

CrossMark logo

Published

2018-03-20

Issue

Section

Articles

How to Cite

Khatibi, A., Pourebrahim, S., & Danehkar, A. (2018). A cellular automata model for monitoring and simulating urban land use/cover changes toward sustainability. Journal of Environmental Engineering and Landscape Management, 26(1), 1-7. https://doi.org/10.3846/16486897.2017.1284666

Share