From waste to resource: bibliometric evaluation of the use of banana pseudostems as biodegradable material

    Erika Jadira Romero Cardenas Info
    Byron Ramiro Romero Romero Info
    Xiomara Zuñiga Santillán Info
    Diego Vladimir Tapia Núñez Info
    Juan Diego Valenzuela Cobos Info
    Edwin Carrasquero Rodríguez Info
DOI: https://doi.org/10.3846/jeelm.2026.25789

Abstract

The search for sustainable alternatives has positioned banana pseudostems as a promising material for the production of bioplastics, biopolymers, and eco-friendly composites. This bibliometric review of 119 publications (2003–2024) reveals growing academic interest in its use as a biodegradable material, with an annual growth rate of 8.91% and an average of 15.25 citations per article. Pseudostem fibers have superior mechanical properties, with a tensile strength of 458 MPa and a modulus of 17.14 GPa. Bioplastics derived from this biomass are not only viable alternatives to conventional plastics, especially in packaging, but also provide antibacterial and UV protection. In addition, these fibers function as efficient biosorbents, achieving up to 100% arsenic removal in water. Sentiment analysis of scientific abstracts indicates a predominant feeling of confidence and optimism, reinforcing the potential of banana pseudostems in sustainable industrial applications and highlighting their role in advancing the circular economy.

Keywords:

banana pseudostem, biodegradable materials, bibliometric analysis, sustainability, biopolymers, biochar

How to Cite

Romero Cardenas, E. J., Romero Romero, B. R., Zuñiga Santillán, X., Tapia Núñez, D. V., Valenzuela Cobos, J. D., & Carrasquero Rodríguez, E. (2026). From waste to resource: bibliometric evaluation of the use of banana pseudostems as biodegradable material. Journal of Environmental Engineering and Landscape Management, 34(1), 29–37. https://doi.org/10.3846/jeelm.2026.25789

Share

Published in Issue
February 11, 2026
Abstract Views
53

References

Ahmad, F., Hossain, M. B., Mustafa, K., Ejaz, F., Khawaja, K. F., & Dunay, A. (2023). Green HRM practices and knowledge sharing improve environmental performance by raising employee commitment to the environment. Sustainability, 15(6), Article 5040. https://doi.org/10.3390/su15065040

Arquelau, P. B. D. F., Silva, V. D. M., Garcia, M. A. V. T., de Araújo, R. L. B., & Fante, C. A. (2019). Characterization of edible coatings based on ripe “Prata” banana peel flour. Food Hydrocolloids, 89, 570–578. https://doi.org/10.1016/j.foodhyd.2018.11.029

Azahari, A. N., Ridzuan, M. J. M., Abdul Majid, M. S., Maslinda, A. B., Cheng, E. M., Khor, S. F., Rahman, M. T. A., & Sulaiman, M. H. (2022). Dielectric, electrical conductivity, and thermal stability studies of cellulosic fibers reinforced polylactic acid composites. Journal of Natural Fibers, 19(16), 14146–14157. https://doi.org/10.1080/15440478.2022.2116625

Badanayak, P., Jose, S., & Bose, G. (2023). Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. Journal of Natural Fibers, 20(1), Article 2168821. https://doi.org/10.1080/15440478.2023.2168821

Basak, S., Samanta, K. K., & Chattopadhyay, S. K. (2015). Fire retardant property of cotton fabric treated with herbal extract. The Journal of the Textile Institute, 106(12), 1338–1347. https://doi.org/10.1080/00405000.2014.995456

Chavez-Guerrero, L., Vazquez-Rodriguez, S., Salinas-Montelongo, J. A., Roman-Quirino, L. E., & Garcia-Gomez, N. A. (2019). Preparation of all-cellulose composites with optical transparency using the banana pseudostem as a raw material. Cellulose, 26(6), 3777–3786. https://doi.org/10.1007/s10570-019-02369-1

Chowdhary, K. R. (2020). Natural language processing. In K. R. Chowdhary (Ed.), Fundamentals of artificial intelligence (pp. 603–649). Springer. https://doi.org/10.1007/978-81-322-3972-7_19

Chugh, R., & Kaur, G. (in press). A mini review on green synthesis of nanoparticles by utilization of Musa- balbisiana waste peel extract. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.11.189

Cuebas, L., Neto, J. A. B., de Barros, R. T. P., Cordeiro, A. O. T., dos Santos Rosa, D., & Martins, C. R. (2021). The incorporation of untreated and alkali-treated banana fiber in SEBS composites. Polímeros: Ciência e Tecnologia, 30(4), Article e2020040. https://doi.org/10.1590/0104-1428.07520

Das Gupta, S., Mahato, D. N., & Paswan, M. K. (2019). Differential fabrication and characterization of natural fiber composite laminates—An investigative approach. Materials Today: Proceedings, 26, 1072–1077. https://doi.org/10.1016/j.matpr.2020.02.212

Das, J., & Velusamy, P. (2013). Biogenic synthesis of antifungal silver nanoparticles using aqueous stem extract of banana. Nano Biomedicine and Engineering, 5(1), 34–38. https://doi.org/10.5101/nbe.v5i1.p34-38

Díaz, P. J., Olvera, Ó., & Cid, A. (2022). On the theoretical study of the structure of a starch-based biopolymer. Journal of Physics: Conference Series, 2307(1), Article 012060. https://doi.org/10.1088/1742-6596/2307/1/012060

Faradilla, R. F., Lee, G., Sivakumar, P., Stenzel, M., & Arcot, J. (2019). Effect of polyethylene glycol (PEG) molecular weight and nanofillers on the properties of banana pseudostem nanocellulose films. Carbohydrate Polymers, 205, 330–339. https://doi.org/10.1016/j.carbpol.2018.10.049

Farias, K. C. S., Guimarães, R. C. A., Oliveira, K. R. W., Nazário, C. E. D., Ferencz, J. A. P., & Wender, H. (2023). Banana peel powder biosorbent for removal of hazardous organic pollutants from wastewater. Toxics, 11(8), Article 664. https://doi.org/10.3390/toxics11080664

Ghosh, M., & Ghosh, P. (2020). Storage study of grapes (Vitis vinifera) using the nanocomposite biodegradable film from banana pseudostem. Journal of Food Processing and Preservation, 44(12), Article e14917. https://doi.org/10.1111/jfpp.14917

Guevara-Viejó, F., Valenzuela-Cobos, J. D., Vicente-Galindo, P., & Galindo-Villardón, P. (2021). Application of K-means clustering algorithm to commercial parameters of Pleurotus spp. Cultivated on representative agricultural wastes from province of Guayas. Journal of Fungi, 7(7), Article 537. https://doi.org/10.3390/jof7070537

Henry, I. M., Carpentier, S. C., Pampurova, S., van Hoylandt, A., Panis, B., Swennen, R., & Remy, S. (2011). Structure and regulation of the Asr gene family in banana. Planta, 234(4), 785–798. https://doi.org/10.1007/s00425-011-1421-0

Jaramillo, L. D., Jaramillo Colorado, B. E., & Restrepo, E. D. (2024). Biomass as a source of materials. In Biomass: The novel green gold: Current trends and future uses of biomass resources (pp. 1–28). Nova Science Publishers, Inc. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188658288&partnerID=40&md5=1ee131a2e0ed09bc7c647b4707493bc3

Joshi, M., Dwivedi, C., & Manjare, S. (2024). A renewable cellulose-rich biofiller material extracted from waste banana stem fibers for reinforcing natural rubber composites. Journal of Materials Science, 59(2), 519–534. https://doi.org/10.1007/s10853-023-09230-8

Kampatzis, A., Sidiropoulos, A., Diamantaras, K., & Ougiaroglou, S. (2024). Sentiment dimensions and intentions in scientific analysis: Multilevel classification in text and citations. Electronics, 13(9), Article 1753. https://doi.org/10.3390/electronics13091753

Kapoor, D. D., Yadav, S., & Gupta, R. K. (2024). Comprehensive study of microbial bioplastic: Present status and future perspectives for sustainable development. Environment, Development and Sustainability, 26, 21985–22011. https://doi.org/10.1007/s10668-023-03620-3

Kumari, A., Sati, P., & Kumar, S. (2025). Bioplastic construction from fruit and plant waste material and its application for water purification. Biomass Conversion and Biorefinery, 15, 24437–24449. https://doi.org/10.1007/s13399-023-05223-4

Lobo-Ramos, L. L., Osorio-Oyola, Y. C., Espeleta-Maya, A., Narvaez-Montaño, F., García-Navarro, S. P., Moreno-Pacheco, L. A., & García-León, R. A. (2023). Experimental study on the thermal conductivity of three natural insulators for industrial fishing applications. Recycling, 8(5), Article 77. https://doi.org/10.3390/recycling8050077

Maity, S., Das, S., Mohapatra, S., Tripathi, A. D., Akthar, J., Pati, S., Pattnaik, S., & Samantaray, D. P. (2020). Growth associated polyhydroxybutyrate production by the novel Zobellellae tiwanensis strain DD5 from banana peels under submerged fermentation. International Journal of Biological Macromolecules, 153, 461–469. https://doi.org/10.1016/j.ijbiomac.2020.03.004

Meiling, Z., Jianhao, S., Yahu, S., Ningting, G., Qianqian, L., Huiying, S., Rui, W., Zhangang, W., Guangwei, Z., & Xupin, Z. (2022). [Performance analysis of the antibacterial wound dressing using banana pseudostem]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 38(21), 180–187. https://doi.org/10.11975/j.issn.1002-6819.2022.21.021

Merais, M. S., Khairuddin, N., Salehudin, M. H., Mobin Siddique, M. B., Lepun, P., & Chuong, W. S. (2022). Preparation and characterization of cellulose nanofibers from banana pseudostem by acid hydrolysis: Physico-chemical and thermal properties. Membranes, 12(5), Article 451. https://doi.org/10.3390/membranes12050451

Mittal, M., Kumar, N., Yadav, A., & Aggarwal, N. K. (2024). Production and optimization of polyhydroxybutyrate by using cupriavidus necator with banana peels as a substrate. Circular Economy and Sustainability, 4(1), 717–732. https://doi.org/10.1007/s43615-023-00305-x

Mohd Sharif, N. S. A., Jamaluddin, M. F., & Zainol, N. (2020). Factorial analysis of ferulic acid production from biowaste. Materials Today: Proceedings, 46, 1763–1769. https://doi.org/10.1016/j.matpr.2020.07.572

Mokkapati, R. P., Mokkapati, J., & Ratnakaram, V. N. (2016). Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, Musa acuminata, Casuarina equisetifolia L. and Sorghum bicolor. Polish Journal of Chemical Technology, 18(2), 68–77. https://doi.org/10.1515/pjct-2016-0031

Mussagy, C. U., & Magri, A. (2022). Introduction to cellulose-based nanobiosorbents. In Nano-biosorbents for decontamination of water, air, and soil pollution (pp. 317–332). Elsevier. https://doi.org/10.1016/B978-0-323-90912-9.00014-9

Ng, Q. H., Kalaiarasi, V., Teoh, Y. P., Ooi, Z. X., Shuit, S. H., & Low, C. Y. (2021). Effect of banana peel waste concentration and mixing rate to the tensile strength of polyvinyl alcohol/banana peel waste composite film: Optimization study via statistical tool. IOP Conference Series: Earth and Environmental Science, 765(1), Article 012031. https://doi.org/10.1088/1755-1315/765/1/012031

Nik Yusuf, N. A. A., Rosly, E. S., Mohamed, M., Abu Bakar, M. B., Yusoff, M., Sulaiman, M. A., & Ahmad, M. I. (2016). Waste banana peel and its potentialization in agricultural applications: Morphology overview. Materials Science Forum, 840, 394–398. https://doi.org/10.4028/www.scientific.net/MSF.840.394

Ooi, Z. X., Ismail, H., & Teoh, Y. P. (2018). Characterization and properties of biodegradable polymer film composites based on polyvinyl alcohol and tropical fruit waste flour. In Natural fiber reinforced vinyl ester and vinyl polymer composites: Development, characterization and applications (pp. 313–332). Elsevier. https://doi.org/10.1016/B978-0-08-102160-6.00016-0

Pallavi, K., Vejandla, R. S., & Srinivasa Babu, P. (2017). Biomass derived polymers from ecowaste. Pharma Times, 49(12), 14–17. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044209426&partnerID=40&md5=ea5469f5e5148aa43e6e4f9bddc7e5d1

Pappu, A., Patil, V., Jain, S., Mahindrakar, A., Haque, R., & Thakur, V. K. (2015). Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. International Journal of Biological Macromolecules, 79, 449–458. https://doi.org/10.1016/j.ijbiomac.2015.05.013

Raturi, P., Panwar, V., & Singh, S. (2021). Characterization of banana peel ionic polymer membrane by using polynomial regression. Materials Today: Proceedings, 46, 10821–10823. https://doi.org/10.1016/j.matpr.2021.01.719

Requiso, P. J., Nayve, Jr., F. R. P., Alfafara, C. G., Ventura, R. L. G., Escobar, E. C., & Ventura, J.-R. S. (2018). Agricultural residue feedstock selection for polyhydroxyalkanoates production using AHP-GRA. Philippine Journal of Science, 147(4), 693–704. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066399664&partnerID=40&md5=4a103abe75a5defb30ffd898f8cc97db

Salit, M. S., Jawaid, M., Yusoff, N. B., & Hoque, M. E. (2015). Manufacturing of natural fibre reinforced polymer composites. Springer. https://doi.org/10.1007/978-3-319-07944-8

Shrestha, P., Sadiq, M. B., & Anal, A. K. (2021). Development of antibacterial biocomposites reinforced with cellulose nanocrystals derived from banana pseudostem. Carbohydrate Polymer Technologies and Applications, 2, Article 100112. https://doi.org/10.1016/j.carpta.2021.100112

Srivastava, K. R., Singh, M. K., Mishra, P. K., & Srivastava, P. (2019). Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. Journal of Polymer Research, 26(4), Article 95. https://doi.org/10.1007/s10965-019-1751-3

Suchaiya, V., & Aht-Ong, D. D. (2013). Evaluation of mechanical and thermal properties of MCC/PLA composite compatibilized with modified cellulose. Advanced Materials Research, 747, 698–702. https://doi.org/10.4028/www.scientific.net/AMR.747.698

Suresh, A., Jayakumar, L., & Devaraju, A. (2020). Investigation of mechanical and wear characteristic of Banana/Jute fiber composite. Materials Today: Proceedings, 39, 324–330. https://doi.org/10.1016/j.matpr.2020.07.426

Tabassum, R. A., Shahid, M., Niazi, N. K., Dumat, C., Zhang, Y., Imran, M., Bakhat, H. F., Hussain, I., & Khalid, S. (2019). Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: A column-scale investigation. International Journal of Phytoremediation, 21(6), 509–518. https://doi.org/10.1080/15226514.2018.1501340

Taboada, M. (2016). Sentiment analysis: An overview from linguistics. Annual Review of Linguistics, 2, 325–347. https://doi.org/10.1146/annurev-linguistics-011415-040518

Tejada-Tovar, C., Gonzalez-Delgado, A. D., & Villabona-Ortiz, A. (2019). Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution. Applied Sciences, 9(21), Article 4486. https://doi.org/10.3390/app9214486

Tibolla, H., Czaikoski, A., Pelissari, F. M., Menegalli, F. C., & Cunha, R. L. (2020). Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments. International Journal of Biological Macromolecules, 161, 132–146. https://doi.org/10.1016/j.ijbiomac.2020.05.194

Tibolla, H., Pelissari, F. M., Rodrigues, M. I., & Menegalli, F. C. (2017). Cellulose nanofibers produced from banana peel by enzymatic treatment: Study of process conditions. Industrial Crops and Products, 95, 664-674. https://doi.org/10.1016/j.indcrop.2016.11.035

Torres-Ordoñez, L. H., Valenzuela-Cobos, J. D., Guevara-Viejó, F., Galindo-Villardón, P., & Vicente-Galindo, P. (2024). Effect of genotype × environment interactions on the yield and stability of sugarcane varieties in Ecuador: GGE biplot analysis by location and year. Applied Sciences, 14(15), Article 6665. https://doi.org/10.3390/app14156665

Valenzuela-Cobos, J. D., Grijalva-Endara, A., Marcillo-Vallejo, R., & Garcés-Moncayo, M. F. (2020). Production and characterization of reconstituted strains of Pleurotus spp. Cultivated on different agricultural wastes. Revista Mexicana de Ingeniería Química, 19(3), 1493–1504. https://doi.org/10.24275/rmiq/Bio1126

Valenzuela-Cobos, J. D., Guevara-Viejó, F., Grijalva-Endara, A., Vicente-Galindo, P., & Galindo-Villardón, P. (2023). Production and evaluation of Pleurotus spp. hybrids cultivated on ecuadorian agro-industrial wastes: Using multivariate statistical methods. Sustainability, 15(21), Article 15546. https://doi.org/10.3390/su152115546

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Wahab, D. N. A., Siddique, M. B. M., Chew, J. J., Su, H. T., Khairuddin, N., Khaerudini, D. S., Hossain, M. S., & Sunarso, J. (2023). Characterization of starch biofilm reinforced with cellulose microfibers isolated from Musa Saba’ midrib residue and its application as an active packaging film. Journal of Applied Polymer Science, 140(48), Article e54720. https://doi.org/10.1002/app.54720

Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731–5780. https://doi.org/10.1007/s10462-022-10144-1

Xu, S., Yu, W., Liu, S., Xu, C., Li, J., & Zhang, Y. (2018). Adsorption of hexavalent chromium using banana pseudostem biochar and its mechanism. Sustainability, 10(11), Article 4250. https://doi.org/10.3390/su10114250

Yadav, V. K., Chauhan, Y. K., Padhy, N. P., & Gupta, H. O. (2013). 66 A novel power sector restructuring model based on Data Envelopment Analysis (DEA). International Journal of Electrical Power and Energy Systems, 44(1), 629–637. https://doi.org/10.1016/j.ijepes.2012.08.013

Zeileis, A., Köll, S., & Graham, N. (2020). Various versatile variances: An object-oriented implementation of clustered covariances in R. Journal of Statistical Software, 95(1), 1–36. https://doi.org/10.18637/jss.v095.i01

View article in other formats

CrossMark check

CrossMark logo

Published

2026-02-11

Issue

Section

Articles

How to Cite

Romero Cardenas, E. J., Romero Romero, B. R., Zuñiga Santillán, X., Tapia Núñez, D. V., Valenzuela Cobos, J. D., & Carrasquero Rodríguez, E. (2026). From waste to resource: bibliometric evaluation of the use of banana pseudostems as biodegradable material. Journal of Environmental Engineering and Landscape Management, 34(1), 29–37. https://doi.org/10.3846/jeelm.2026.25789

Share