

FROM WASTE TO RESOURCE: BIBLIOMETRIC EVALUATION OF THE USE OF BANANA PSEUDOSTEMS AS BIODEGRADABLE MATERIAL

Erika Jadira ROMERO CARDENAS[✉], Byron Ramiro ROMERO ROMERO, Xiomara ZUÑIGA SANTILLÁN, Diego Vladimir TAPIA NÚÑEZ, Juan Diego VALENZUELA COBOS, Edwin CARRASQUERO RODRÍGUEZ

Facultad de Ciencias Sociales, Educación Comercial y Derecho, Universidad Estatal de Milagro, Milagro, Ecuador

Highlights:

- comprehensive bibliometric analysis of banana pseudostem as a biodegradable material;
- identification of unique mechanical and chemical properties of banana fibers;
- highlighted the feasibility of banana pseudostem for sustainable biopolymer production;
- utilized VOSviewer and RStudio to map relevant journals and collaboration networks;
- sentiment analysis revealed predominantly positive and confident views in the scientific community.

Article History:

- received 22 May 2024
- accepted 15 September 2025

Abstract. The search for sustainable alternatives has positioned banana pseudostems as a promising material for the production of bioplastics, biopolymers, and eco-friendly composites. This bibliometric review of 119 publications (2003–2024) reveals growing academic interest in its use as a biodegradable material, with an annual growth rate of 8.91% and an average of 15.25 citations per article. Pseudostem fibers have superior mechanical properties, with a tensile strength of 458 MPa and a modulus of 17.14 GPa. Bioplastics derived from this biomass are not only viable alternatives to conventional plastics, especially in packaging, but also provide antibacterial and UV protection. In addition, these fibers function as efficient biosorbents, achieving up to 100% arsenic removal in water. Sentiment analysis of scientific abstracts indicates a predominant feeling of confidence and optimism, reinforcing the potential of banana pseudostems in sustainable industrial applications and highlighting their role in advancing the circular economy.

Keywords: banana pseudostem, biodegradable materials, bibliometric analysis, sustainability, biopolymers, biochar.

[✉]Corresponding author. E-mail: romeroc@unemi.edu.ec

1. Introduction

The global demand for sustainable and environmentally friendly materials has driven growing interest in the use of biodegradable alternatives across multiple industries (Guevara-Viejo et al., 2021; Valenzuela-Cobos et al., 2020, 2023). Traditional petroleum-based fibers, while widely used, are associated with environmental concerns due to their toxicity, lack of biodegradability, and energy-intensive production processes (Das Gupta et al., 2019; Ng et al., 2021; Requiso et al., 2018). As a result, there is a shift toward natural, renewable sources that offer lower environmental impact and enhanced material performance (Torres-Ordoñez et al., 2024).

In this context, biologically enriched macromolecular resources have emerged as promising candidates for industrial applications (Maity et al., 2020; Suresh et al., 2020). Among these, banana pseudostem has gained attention

due to its availability, mechanical strength, and biodegradability (Faradilla et al., 2019; Ghosh & Ghosh, 2020; Meiling et al., 2022). Banana fibers exhibit a tensile strength of 458 MPa and a modulus of 17.14 GPa, outperforming other natural fibers such as jute, coconut, and palm (Pappu et al., 2015). Their high flexibility and ease of processing expand their applicability in packaging and biocomposites (Azahari et al., 2022; Badanayak et al., 2023; Merais et al., 2022).

Beyond their mechanical properties, banana-based materials have demonstrated functional potential. Das and Velusamy (2013) showed that blending banana pseudostem extract with polyvinyl alcohol (PVA) and glycerol can yield bioplastics with improved mechanical and barrier properties. Similarly, Ahmad et al. (2023) reported that incorporating extracts from fruit and vegetable peels such as banana, orange, and spinach into edible films can improve oxidative stability in food packaging. These findings

underscore the potential of agricultural waste in the development of value added materials.

Banana pseudostem is also a promising biomass source for bioethanol production. Das and Velusamy (2013) estimated the theoretical ethanol yield from several agricultural residues, including banana, and demonstrated its feasibility based on the conversion of cellulose, hemicellulose, and starch. Other studies (Pallavi et al., 2017) support the use of lignocellulosic waste as a viable feedstock for bioenergy.

Despite its potential, the use of banana pseudostem in industrial applications remains underexplored. To address this gap, this study presents a comprehensive bibliometric review of the scientific literature on banana pseudostem as a biodegradable material (Tibolla et al., 2017). The review aims to evaluate its viability, highlight key application areas, and identify trends and opportunities that contribute to the development of sustainable solutions across industries.

2. Methodology

2.1. Data collection

The present research is based on a bibliometric review carried out using the Scopus database, whose search yielded a total of 119 documents, consisting of 71 scientific articles, 26 conference papers, 10 reviews, 9 book chapters, 1 book and 1 conference review. To ensure exhaustive coverage of the topic, a complex search string combining terms related to banana pseudostem and biodegradable materials was used, using the following Boolean operator: TITLE-ABS-KEY ("banana pseudostem" OR "banana stem" OR "banana waste" OR "banana decomposition" OR "banana biomass" OR "banana trunk" OR "banana stalk" OR "banana byproduct" OR "banana residue" OR "banana peel") AND ("biodegradable material" OR "biopolymer" OR "eco-friendly materials" OR "biomaterials" OR "biodegradable polymer" OR "natural polymer" OR "green materials" OR "biodegradable packaging" OR "cellulose extraction" OR "fiber composites" OR "polylactic acid" OR "polyhydroxyalkanoates" OR "starch-based bioplastics") AND ("pseudostem" OR "stem" OR "residue" OR "decomposition" OR "biomass" OR "biodegradable" OR "bio-degradable" OR "biodegradation").

The search covered the period from 2003 to January 15, 2024, with the objective of compiling the most relevant and updated documents indexed up to that date. Although more restrictive filters were initially considered, the limited availability of studies focused exclusively on banana pseudostem led to include all the documents obtained, to form a representative and diverse database.

During the compilation, several challenges were faced, such as the dispersion of studies across multiple sources, the limited accessibility of certain key papers, and the difficulty in identifying research specifically focused on

pseudostem products. To mitigate these obstacles, inclusion criteria were established to ensure the relevance and quality of the selected studies:

- Focus on banana-derived products.
- Presence of discussions on the biodegradability of such products.
- Relevance of the type of document for bibliometric analysis.
- Publication within the period 2003–2024.
- Availability in a language understandable to researchers.

2.2. Bibliometric mapping

The bibliometric analysis was conducted using specialized software such as VOSviewer, which is designed for the creation and visualization of bibliometric maps, allowing for the identification of relationships between authors, keywords, and publications (Van Eck & Waltman, 2010), and RStudio 2023.12.0 Build 369, a comprehensive development platform for R that facilitates the statistical and graphical analysis of collected data (Zeileis et al., 2020), using the Bibliometrix package and its Biblioshiny graphical interface. This combination of tools enabled the identification of trends in publication volume over time, determination of the most frequently used journals for these studies, analysis of collaboration networks among authors and countries, and highlighting of the most commonly used key terms in this field of research.

Table 1 summarizes the main metrics of the database analyzed:

Table 1. Main information

Description	Results
Space of time	2003:2024
Sources (magazines, books, etc.)	83
Documents	119
Annual growth rate %	8.91
Average document age	4.63
Average citations per document	15.25
References	5438

The application of these criteria ensured that the bibliometric review focused on the most relevant and useful information available on the topic of interest. In addition, as a complement to the quantitative analysis, a sentiment analysis applied to the abstracts of the documents collected was carried out. This qualitative approach made it possible to identify the predominant emotions expressed in the academic discourse on banana pseudostem as a biodegradable resource, revealing positive perceptions and a general tone of confidence in its scientific and industrial viability. This emotional perspective provides a broader view of the scientific community's attitudes towards this sustainable alternative.

2.3. Natural Language Processing (NLP)

Natural Language Processing (NLP) is a field of artificial intelligence that allows machines to understand, interpret and generate human language in a useful way (Chowdhary, 2020). This technology is especially valuable for analyzing large volumes of text in an automated, efficient, and accurate manner.

In this study, NLP was used to perform sentiment analysis on the abstracts of 119 scientific articles related to the use of banana pseudostem as a biodegradable material. The abstracts were extracted from a CSV file and subjected to a textual preprocessing process, which included: conversion of all text to lowercase, removal of punctuation marks, numbers and stopwords, and normalization of linguistic content. These cleaning steps are essential to reduce semantic noise and optimize the accuracy of the subsequent analysis.

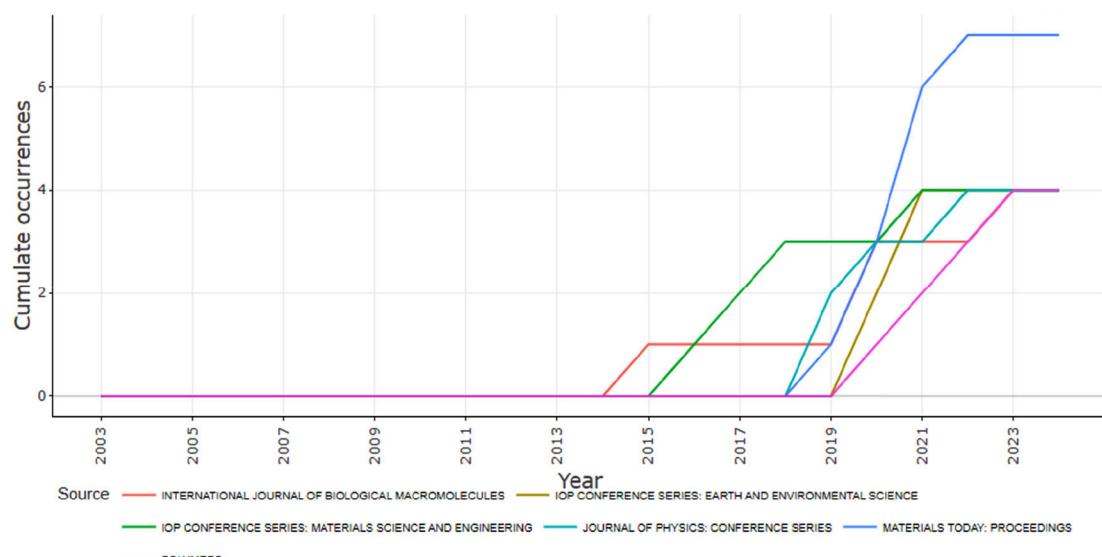
Subsequently, the "syuzhet" package was applied in R, which uses emotion lexicons to classify words into eight basic emotional categories: joy, trust, fear, surprise, sadness, disgust, anger and anticipation, according to Plutchik's model. This methodology made it possible to quantify the emotional charge of the texts, yielding results that were represented graphically by means of a bar chart (Figure 2).

3. Research results

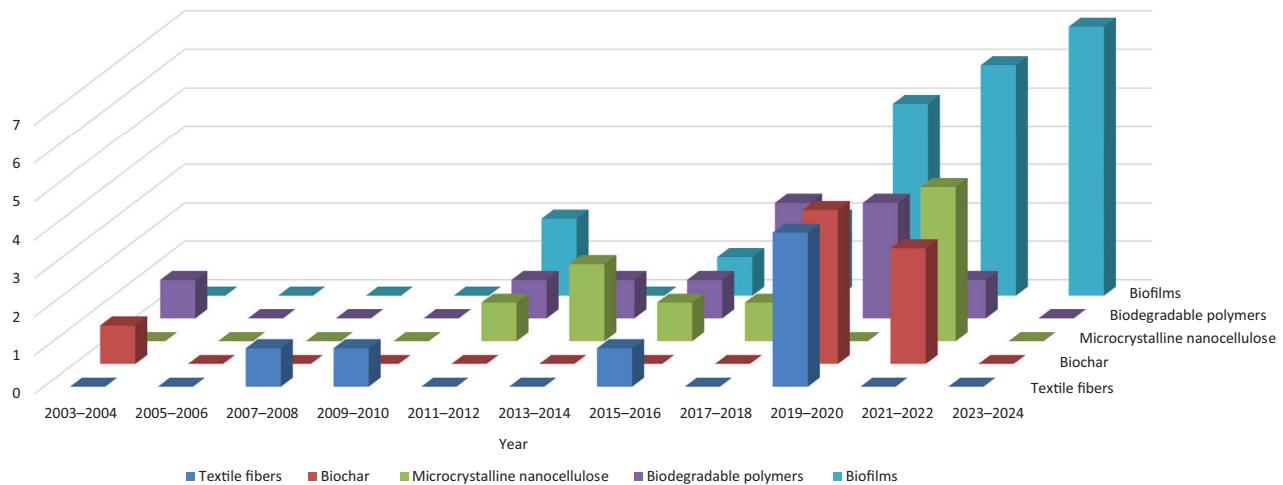
According to the data obtained through the Bibliometrix tool, a temporal analysis of scientific production from 2003 to 2024 was carried out. As shown in Figure 1, there is a sustained growth in the cumulative number of publications related to the defined search string.

The International JOURNAL OF BIOLOGICAL MACRO-MOLECULES stands out, which presents the highest cumulative number of publications in the area, followed by MATERIALS TODAY: PROCEEDINGS. Both journals have

shown a constant growth trend, which reflects a continuous interest of the scientific community in their respective lines of research.


Also, the conference series "IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING" and "JOURNAL OF PHYSICS: CONFERENCE SERIES" also show a significant increase in the cumulative count of publications, suggesting a growing interest in the thematic areas covered by these conferences. These data support the importance and relevance of publications related to materials, earth sciences, and the environment, as well as macromolecular biology within the scientific community. The analysis of these trends can provide valuable information on the development and evolution of research in these fields over time.

3.1. Advances in biodegradable materials


Figure 2 presents a bibliometric comparison of research focused on the main by-products derived from the banana pseudostem over the period from 2003 to 2024.

From Figure 2, it can be observed that biofilm is the most common by-product utilizing the banana pseudostem. Recent studies, such as the one by (Chavez-Guerrero et al., 2019), investigated the production of cellulose films with good transparency derived from the banana pseudostem. Similarly, Henry et al. (2011) worked on creating bioplastics from agricultural waste, demonstrating how these residues can be transformed into useful and environmentally friendly products. Additionally, the properties of biodegradable films based on polyvinyl alcohol and tropical fruit waste flour have been studied, highlighting their potential to replace conventional plastic materials (Ooi et al., 2018).

The fiber of the banana pseudostem is primarily composed of cellulose (55–65%), hemicellulose (15–25%), lignin (10–15%), and pectin (3–5%) (Srivastava et al., 2019). Cellulose, being the predominant component, is essential for providing structural integrity to the fiber. Suchaiya and

Figure 1. Scientific production over the years

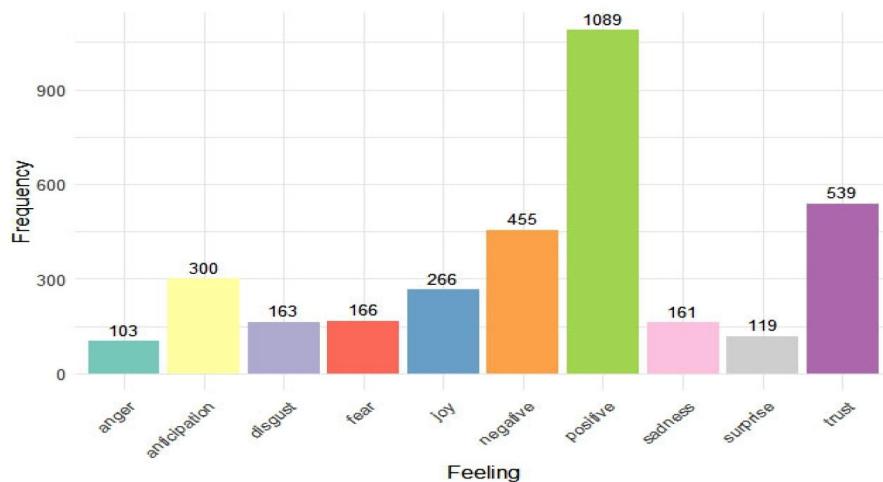
Figure 2. Bibliometric comparison of the main by-products derived from the banana pseudostem

Aht-Ong (2013) investigated the production of microcrystalline cellulose from banana pseudostems, cementing new opportunities to use organic waste in creating innovative materials.

Similarly, Tibolla et al. (2020) analyzed how process conditions, such as pH, temperature, and concentrations of enzymes and substrates, influence the properties of cellulose nanofibers (CNF). Their results showed that treatment with xylanase at a concentration of 70 U/g of banana peel, with a substrate concentration of 15%, a pH of 6.0, and a temperature between 35 and 55 °C, significantly favored enzymatic hydrolysis (Merais et al., 2022; Tibolla et al., 2017). Transmission electron microscopy (TEM) images confirmed that this treatment effectively isolated cellulose fibers at the nanoscale. Additionally, Fourier-transform infrared spectroscopy (FTIR) analysis revealed the removal of amorphous compounds, while X-ray diffraction showed a high crystallinity index (66.2%) in the CNF (Mittal et al., 2024; Tejada-Tovar et al., 2019).

Other uses of banana pseudostem include biochar (Mokkapati et al., 2016) for the removal of toxic contaminants from aqueous solutions (Tabassum et al., 2019) a crucial strategy for enhancing sustainability in wastewater treatment (Farias et al., 2023; Mussagy & Magri, 2022). In a study conducted by Xu et al. (2018), the potential of banana pseudostem-derived biosorbents for arsenic removal was demonstrated, achieving efficiencies of 100%, 100%, and 90% in groundwater samples contaminated with 5, 10, and 50 µg/L of As, and 50%, 90%, and 90% in solutions with concentrations of 10, 50, and 100 µg/L of As. This approach not only helps purify water but also utilizes agricultural waste, providing a doubly sustainable solution (Kumari et al., 2025).

Furthermore, Basak et al. (2015) have contributed to the development of special chemical finishes for sustainable luxury textiles, integrating nanotechnology and bio-polymers to enhance the antimicrobial properties (Raturi et al., 2021) and UV protection of fabrics, demonstrating how material science can positively influence the high-end


textile industry. The collaboration between these scientists highlights the importance of interdisciplinary and collective research in addressing global sustainability challenges (Maity et al., 2020; Joshi et al., 2024). Each study contributes to a better understanding of natural resource and waste management (Lobo-Ramos et al., 2023). In addition, they offer insights into the integration of biodegradable materials into everyday life (Díaz et al., 2022; Kapoor et al., 2024), promoting the replacement of unsustainable materials and the reduction of negative environmental impacts.

3.2. Sentiment analysis

To complement the bibliometric analysis, a sentiment analysis was performed following the method proposed by Wankhade et al. (2022). This technique identifies the predominant emotional tone in the articles, providing additional insight into the implicit attitudes of researchers regarding the topics addressed (see Figure 3). Since emotions can influence scientific communication and the perception of its results Taboada (2016), understanding these emotional aspects allows for a more comprehensive understanding of the dynamics in the field of study.

The results indicate a predominance of feelings such as "positivity" and "confidence," which may reflect widespread optimism or high expectations within the scientific community regarding the topics discussed. On the other hand, emotions such as "joy" and "fear" were also detected, showing a variety of emotional attitudes toward advances and challenges in the field.

In academia, a positive and, in many cases, non-linear relationship has been observed between productivity in terms of number of publications and the quality of those publications, which is measured by the number of citations they receive. This implies that authors who publish more frequently tend to obtain a greater number of citations, which can be interpreted as greater influence or impact of their work on the scientific community. Citation analysis, which studies the frequency and patterns of citations in articles and books, allows us to detect emerging trends

Figure 3. Sentiments in research abstracts

and thematic relationships between the work of different researchers over time. For example, an author may receive more citations in a specific period due to the relevance of their research at that time or the publication of a particularly influential article.

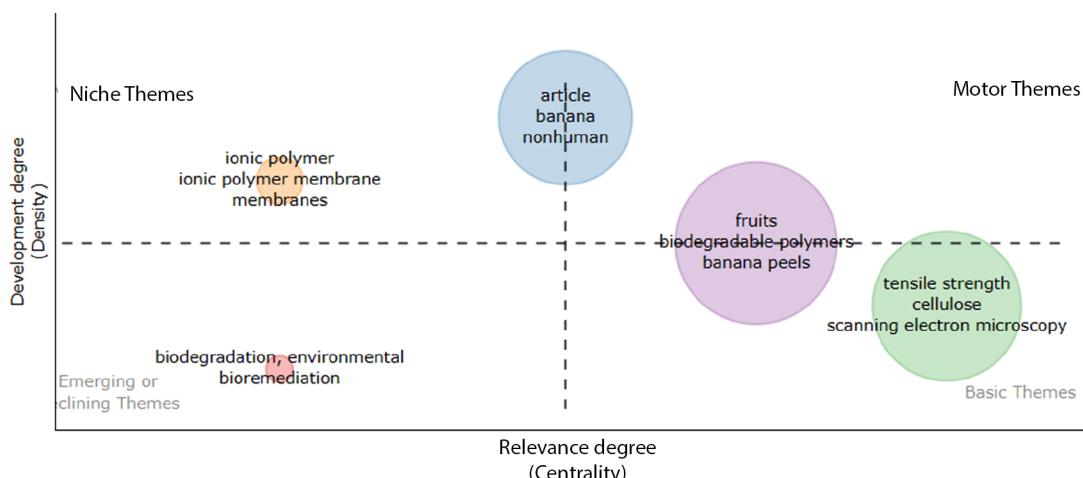
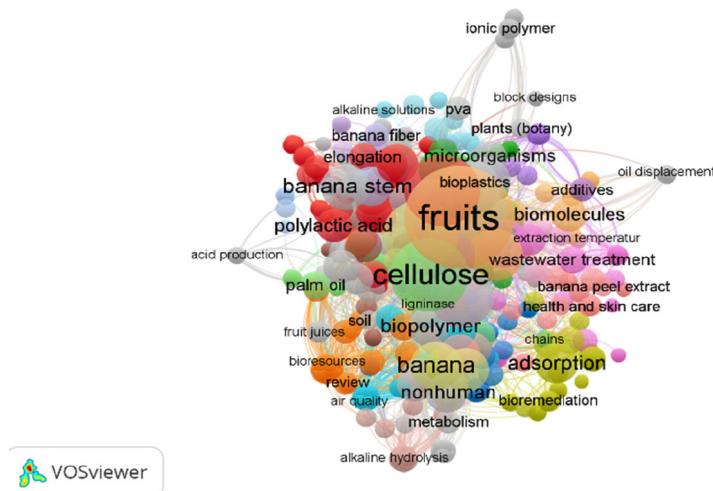

3.3. Characterization and mapping of research topics on banana pseudostem-derived products: thematic analysis

Figure 4 presents a Thematic Map that organizes the key research topics related to products derived from the banana pseudostem, using two fundamental dimensions: Relevance (Centrality) and Development (Density). These axes help identify which topics are more central and well-developed, in contrast to those that are emerging or in decline.


The most relevant and dense topics in the research on banana pseudostem as a biodegradable material (Figure 4) include biodegradation, biodegradable materials, cellulose, and the banana pseudostem itself. These topics are fundamental in the field and show a significant level of research and development. On the other hand, emerging

or declining topics such as ionic polymer membranes and bioremediation are also observed. Although these topics may not be as prominent as the former, they show increasing or decreasing interest in research within these specific fields. Established topics such as fruit, biodegradable polymers, tensile strength, and scanning electron microscopy represent well-established areas of study that have contributed to the existing knowledge on the subject.

Among the most relevant and developed topics are biodegradation, biodegradable materials, cellulose and the banana pseudostem itself, which are fundamental pillars within the field of study. These topics have been the subject of numerous studies, reflecting their scientific maturity and their potential for technological application. On the other hand, topics such as ionic polymer membranes and bioremediation emerge, which although they present a lower research density, point to new directions of scientific exploration with possibilities for growth. Established topics such as fruit, biodegradable polymers, tensile strength and scanning electron microscopy also occupy an important place, contributing significantly to the body of accumulated knowledge on the use of pseudostems.

Figure 4. Thematic map

Figure 5. Word cloud

Complementarily, Figure 5 shows a word cloud that synthesizes the most frequent concepts in the literature analyzed. In this visualization, the size of the terms indicates their relevance and recurrence in the studies. The most prominent words include banana stem, fruits, cellulose, biopolymer and banana, which confirms the predominant focus on the use of pseudostem as a source of cellulose and other biodegradable compounds. In addition, terms associated with specific applications such as polylactic acid, bioplastics, adsorption, wastewater treatment, banana peel extract and health and skin care are identified, which shows a growing interest in its use in sectors such as environmental and cosmetics.

Terms linked to the extraction and structural modification processes also appear, such as extraction temperature, alkaline hydrolysis and elongation, indicating that diverse methodologies are being developed to optimize the obtaining and transformation of pseudostem components. Overall, this visualization provides a clear overview of the most active lines of research, as well as the potential applications of banana pseudostem as a raw material for the development of biodegradable materials and bioactive compounds.

4. Discussion

The sentiment analysis conducted on the analyzed scientific abstracts revealed a predominance of emotions such as positivity and confidence, which reflects a favorable perception by the research community regarding the use of banana pseudostem as a sustainable resource (Kamatzis et al., 2024). This optimism supports the increasing valorization of agricultural residues as viable alternatives to petroleum-derived materials, promoting more environmentally friendly and sustainable solutions. In turn, the confidence evidenced in the literature suggests an active willingness to invest resources in new technologies that enhance the adoption of pseudostems in various industrial applications.

From a bibliometric perspective, a high thematic centrality of compounds such as cellulose and biopolymers was identified, evidencing their fundamental role in the development of biodegradable plastics. Particularly, the extraction of cellulose nanofibers (CNFs) has been consolidated as an effective technique, standing out for their morphological properties with diameters close to 3.7 nm and a high aspect ratio as well as for the stability of their suspensions (zeta value of -29.1 mV) (Wahab et al., 2023). These characteristics reinforce their usefulness as reinforcing agents in composite materials.

Additionally, it has been demonstrated that pseudostem residues can be used in the synthesis of biocomposites with functional properties, such as the production of ferulic acid, an antioxidant with anti-inflammatory effects and UV protection capacity (Mohd Sharif et al., 2020). These types of applications extend the potential of pseudostem beyond its structural use, positioning it also as a source of value-added bioactive compounds (Shrestha et al., 2021).

In addition, natural fiber composites are recognized as emerging materials with great potential for engineering applications (Cuevas et al., 2021). Various plant fibers including banana stalk, rice husk, sisal, jute or kenaf have demonstrated competitive advantages, such as low cost, availability, renewability and light weight (Jaramillo et al., 2024). These materials have been successfully used in sectors such as automotive, construction, shipbuilding, aerospace and furniture, partially replacing synthetic materials (Salit et al., 2015).

However, despite numerous advances in the characterization of properties and applications of pseudo-steel-derived composites, limited availability of studies targeting industrial-scale manufacturing processes persists (Chugh & Kaur, in press). Therefore, an important opportunity is identified for future research focused on standardizing transformation and scalability processes, allowing their practical implementation in commercial contexts.

Overall, the results obtained through this study underline the high potential of banana pseudostem as a raw material for the elaboration of biodegradable materials. The continuity of this line of research could be oriented towards functional analysis and the technical and economic feasibility of its integration into industrial systems, strengthening its role as an ecological solution to current environmental challenges (Arquelau et al., 2019; Nik Yusuf et al., 2016; Yadav et al., 2013).

5. Limitations of the study

It is important to recognize that this bibliometric analysis was conducted exclusively using records indexed in the Scopus database. While Scopus is considered one of the most comprehensive and reliable scientific indexing platforms, it does not cover the entirety of global academic output. Therefore, publications not included in Scopus may have been omitted from the analysis, particularly those from emerging journals, regional databases, or alternative open-access platforms. This limitation may affect the overall representativeness and scope of the findings, especially with regard to identifying all relevant contributions related to the application of banana pseudostems as biodegradable materials. It is recommended that future studies expand the range of data sources and adopt multi-platform bibliometric strategies to achieve a more holistic and inclusive mapping of scientific discourse in this field.

6. Conclusions

The purpose of this article was to explore the banana pseudostem as an alternative resource with high potential for the production of biodegradable materials, through a combined approach of bibliometric, thematic and sentiment analysis. From this integrated approach, it was possible to identify the main lines of current research, as well as the most relevant emerging industrial applications.

The findings indicate that pseudostem derivatives, in particular cellulose and biopolymers, are being widely investigated as a basis for the manufacture of bioplastics, biocomposites, biosorbents and other functional materials. These applications extend to sectors such as packaging, water treatment, textiles and the development of biodegradable medical devices, with particular interest in their antimicrobial and UV protection properties.

There is also a sustained growth in the use of pseudostems in the manufacture of bioplastics that could replace conventional plastics, as well as in the production of materials applicable in environmentally friendly industries. The bibliometric review also revealed a remarkable enthusiasm and positive perception by the scientific community, suggesting a favorable openness towards the development of sustainable technologies based on agricultural residues. This study highlights the importance of continuing research on the processes of extraction, characterization, scalability and application of materials derived from

banana pseudostems, promoting sustainable solutions that contribute to the development of a circular and environmentally friendly bioeconomy.

Acknowledgements

I would like to express my gratitude to the State University of Milagro for providing access to Scopus documents.

Conflicts of interest

The authors declare no conflicts of interest.

References

Ahmad, F., Hossain, M. B., Mustafa, K., Ejaz, F., Khawaja, K. F., & Dunay, A. (2023). Green HRM practices and knowledge sharing improve environmental performance by raising employee commitment to the environment. *Sustainability*, 15(6), Article 5040. <https://doi.org/10.3390/su15065040>

Arquelau, P. B. D. F., Silva, V. D. M., Garcia, M. A. V. T., de Araújo, R. L. B., & Fante, C. A. (2019). Characterization of edible coatings based on ripe "Prata" banana peel flour. *Food Hydrocolloids*, 89, 570–578. <https://doi.org/10.1016/j.foodhyd.2018.11.029>

Azahari, A. N., Ridzuan, M. J. M., Abdul Majid, M. S., Maslinda, A. B., Cheng, E. M., Khor, S. F., Rahman, M. T. A., & Sulaiman, M. H. (2022). Dielectric, electrical conductivity, and thermal stability studies of cellulosic fibers reinforced polylactic acid composites. *Journal of Natural Fibers*, 19(16), 14146–14157. <https://doi.org/10.1080/15440478.2022.2116625>

Badanayak, P., Jose, S., & Bose, G. (2023). Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. *Journal of Natural Fibers*, 20(1), Article 2168821. <https://doi.org/10.1080/15440478.2023.2168821>

Basak, S., Samanta, K. K., & Chattopadhyay, S. K. (2015). Fire retardant property of cotton fabric treated with herbal extract. *The Journal of the Textile Institute*, 106(12), 1338–1347. <https://doi.org/10.1080/00405000.2014.995456>

Chavez-Guerrero, L., Vazquez-Rodriguez, S., Salinas-Montelongo, J. A., Roman-Quirino, L. E., & Garcia-Gomez, N. A. (2019). Preparation of all-cellulose composites with optical transparency using the banana pseudostem as a raw material. *Cellulose*, 26(6), 3777–3786. <https://doi.org/10.1007/s10570-019-02369-1>

Chowdhary, K. R. (2020). Natural language processing. In K. R. Chowdhary (Ed.), *Fundamentals of artificial intelligence* (pp. 603–649). Springer. https://doi.org/10.1007/978-81-322-3972-7_19

Chugh, R., & Kaur, G. (in press). A mini review on green synthesis of nanoparticles by utilization of *Musa- balbisiana* waste peel extract. *Materials Today: Proceedings*. <https://doi.org/10.1016/j.matpr.2022.11.189>

Cuebas, L., Neto, J. A. B., de Barros, R. T. P., Cordeiro, A. O. T., dos Santos Rosa, D., & Martins, C. R. (2021). The incorporation of untreated and alkali-treated banana fiber in SEBS composites. *Polímeros: Ciéncia e Tecnologia*, 30(4), Article e2020040. <https://doi.org/10.1590/0104-1428.07520>

Das Gupta, S., Mahato, D. N., & Paswan, M. K. (2019). Differential fabrication and characterization of natural fiber composite laminates—An investigative approach. *Materials Today: Proceedings*, 26, 1072–1077. <https://doi.org/10.1016/j.matpr.2020.02.212>

Das, J., & Velusamy, P. (2013). Biogenic synthesis of antifungal silver nanoparticles using aqueous stem extract of banana. *Nano Biomedicine and Engineering*, 5(1), 34–38. <https://doi.org/10.5101/nbe.v5i1.p34-38>

Díaz, P. J., Olvera, Ó., & Cid, A. (2022). On the theoretical study of the structure of a starch-based biopolymer. *Journal of Physics: Conference Series*, 2307(1), Article 012060. <https://doi.org/10.1088/1742-6596/2307/1/012060>

Faradilla, R. F., Lee, G., Sivakumar, P., Stenzel, M., & Arcot, J. (2019). Effect of polyethylene glycol (PEG) molecular weight and nano-fillers on the properties of banana pseudostem nanocellulose films. *Carbohydrate Polymers*, 205, 330–339. <https://doi.org/10.1016/j.carbpol.2018.10.049>

Farias, K. C. S., Guimarães, R. C. A., Oliveira, K. R. W., Nazário, C. E. D., Ferencz, J. A. P., & Wender, H. (2023). Banana peel powder biosorbent for removal of hazardous organic pollutants from wastewater. *Toxics*, 11(8), Article 664. <https://doi.org/10.3390/toxics11080664>

Ghosh, M., & Ghosh, P. (2020). Storage study of grapes (*Vitis vinifera*) using the nanocomposite biodegradable film from banana pseudostem. *Journal of Food Processing and Preservation*, 44(12), Article e14917. <https://doi.org/10.1111/jfpp.14917>

Guevara-Viejó, F., Valenzuela-Cobos, J. D., Vicente-Galindo, P., & Galindo-Villardón, P. (2021). Application of K-means clustering algorithm to commercial parameters of *Pleurotus* spp. Cultivated on representative agricultural wastes from province of Guayas. *Journal of Fungi*, 7(7), Article 537. <https://doi.org/10.3390/jof7070537>

Henry, I. M., Carpentier, S. C., Pampurova, S., van Hoylandt, A., Panis, B., Swennen, R., & Remy, S. (2011). Structure and regulation of the Asr gene family in banana. *Planta*, 234(4), 785–798. <https://doi.org/10.1007/s00425-011-1421-0>

Jaramillo, L. D., Jaramillo Colorado, B. E., & Restrepo, E. D. (2024). Biomass as a source of materials. In *Biomass: The novel green gold: Current trends and future uses of biomass resources* (pp. 1–28). Nova Science Publishers, Inc. <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188658288&partnerID=40&md5=1ee131a2e0ed09bc7c647b4707493bc3>

Joshi, M., Dwivedi, C., & Manjare, S. (2024). A renewable cellulose-rich biofiller material extracted from waste banana stem fibers for reinforcing natural rubber composites. *Journal of Materials Science*, 59(2), 519–534. <https://doi.org/10.1007/s10853-023-09230-8>

Kampatzis, A., Sidiropoulos, A., Diamantaras, K., & Ougiaroglou, S. (2024). Sentiment dimensions and intentions in scientific analysis: Multilevel classification in text and citations. *Electronics*, 13(9), Article 1753. <https://doi.org/10.3390/electronics13091753>

Kapoor, D. D., Yadav, S., & Gupta, R. K. (2024). Comprehensive study of microbial bioplastic: Present status and future perspectives for sustainable development. *Environment, Development and Sustainability*, 26, 21985–22011. <https://doi.org/10.1007/s10668-023-03620-3>

Kumari, A., Sati, P., & Kumar, S. (2025). Bioplastic construction from fruit and plant waste material and its application for water purification. *Biomass Conversion and Biorefinery*, 15, 24437–24449. <https://doi.org/10.1007/s13399-023-05223-4>

Lobo-Ramos, L. L., Osorio-Oyola, Y. C., Espeleta-Maya, A., Narvaez-Montaño, F., García-Navarro, S. P., Moreno-Pacheco, L. A., & García-León, R. A. (2023). Experimental study on the thermal conductivity of three natural insulators for industrial fishing applications. *Recycling*, 8(5), Article 77. <https://doi.org/10.3390/recycling8050077>

Maity, S., Das, S., Mohapatra, S., Tripathi, A. D., Akthar, J., Pati, S., Pattnaik, S., & Samantaray, D. P. (2020). Growth associated polyhydroxybutyrate production by the novel *Zobellellae* *tiwanensis* strain DD5 from banana peels under submerged fermentation. *International Journal of Biological Macromolecules*, 153, 461–469. <https://doi.org/10.1016/j.ijbiomac.2020.03.004>

Meiling, Z., Jianhao, S., Yahu, S., Ningting, G., Qianqian, L., Huiying, S., Rui, W., Zhangang, W., Guangwei, Z., & Xupin, Z. (2022). 香蕉假茎制备抗菌敷料的性能分析 [Performance analysis of the antibacterial wound dressing using banana pseudostem]. *Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering*, 38(21), 180–187. <https://doi.org/10.11975/j.issn.1002-6819.2022.21.021>

Merais, M. S., Khairuddin, N., Salehudin, M. H., Mobin Sidiq, M. B., Lepun, P., & Chuong, W. S. (2022). Preparation and characterization of cellulose nanofibers from banana pseudostem by acid hydrolysis: Physico-chemical and thermal properties. *Membranes*, 12(5), Article 451. <https://doi.org/10.3390/membranes12050451>

Mittal, M., Kumar, N., Yadav, A., & Aggarwal, N. K. (2024). Production and optimization of polyhydroxybutyrate by using *cupriavidus* nector with banana peels as a substrate. *Circular Economy and Sustainability*, 4(1), 717–732. <https://doi.org/10.1007/s43615-023-00305-x>

Mohd Sharif, N. S. A., Jamaluddin, M. F., & Zainol, N. (2020). Factorial analysis of ferulic acid production from biowaste. *Materials Today: Proceedings*, 46, 1763–1769. <https://doi.org/10.1016/j.matpr.2020.07.572>

Mokkapati, R. P., Mokkapati, J., & Ratnakaram, V. N. (2016). Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, *Musa acuminata*, *Casuarina equisetifolia* L. and *Sorghum bicolor*. *Polish Journal of Chemical Technology*, 18(2), 68–77. <https://doi.org/10.1515/pjct-2016-0031>

Mussagy, C. U., & Magri, A. (2022). Introduction to cellulose-based nanobiosorbents. In *Nano-biosorbents for decontamination of water, air, and soil pollution* (pp. 317–332). Elsevier. <https://doi.org/10.1016/B978-0-323-90912-9.00014-9>

Ng, Q. H., Kalaiarasi, V., Teoh, Y. P., Ooi, Z. X., Shuit, S. H., & Low, C. Y. (2021). Effect of banana peel waste concentration and mixing rate to the tensile strength of polyvinyl alcohol/banana peel waste composite film: Optimization study via statistical tool. *IOP Conference Series: Earth and Environmental Science*, 765(1), Article 012031. <https://doi.org/10.1088/1755-1315/765/1/012031>

Nik Yusuf, N. A. A., Rosly, E. S., Mohamed, M., Abu Bakar, M. B., Yusoff, M., Sulaiman, M. A., & Ahmad, M. I. (2016). Waste banana peel and its potentialization in agricultural applications: Morphology overview. *Materials Science Forum*, 840, 394–398. <https://doi.org/10.4028/www.scientific.net/MSF.840.394>

Ooi, Z. X., Ismail, H., & Teoh, Y. P. (2018). Characterization and properties of biodegradable polymer film composites based on polyvinyl alcohol and tropical fruit waste flour. In *Natural fiber reinforced vinyl ester and vinyl polymer composites: Development, characterization and applications* (pp. 313–332). Elsevier. <https://doi.org/10.1016/B978-0-08-102160-6.00016-0>

Pallavi, K., Vejandla, R. S., & Srinivasa Babu, P. (2017). Biomass derived polymers from ecowaste. *Pharma Times*, 49(12), 14–17. <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044209426&partnerID=40&md5=ea5469f5e5148aa43e6e4f9bdc7e5d1>

Pappu, A., Patil, V., Jain, S., Mahindrakar, A., Haque, R., & Thakur, V. K. (2015). Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A

review. *International Journal of Biological Macromolecules*, 79, 449–458. <https://doi.org/10.1016/j.ijbiomac.2015.05.013>

Raturi, P., Panwar, V., & Singh, S. (2021). Characterization of banana peel ionic polymer membrane by using polynomial regression. *Materials Today: Proceedings*, 46, 10821–10823. <https://doi.org/10.1016/j.matpr.2021.01.719>

Requiso, P. J., Nayve, Jr., F. R. P., Alfafara, C. G., Ventura, R. L. G., Escobar, E. C., & Ventura, J.-R. S. (2018). Agricultural residue feedstock selection for polyhydroxyalkanoates production using AHP-GRA. *Philippine Journal of Science*, 147(4), 693–704. <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066399664&partnerID=40&md5=4a103abe75a5defb30ffd898f8cc97db>

Salit, M. S., Jawaid, M., Yusoff, N. B., & Hoque, M. E. (2015). *Manufacturing of natural fibre reinforced polymer composites*. Springer. <https://doi.org/10.1007/978-3-319-07944-8>

Shrestha, P., Sadiq, M. B., & Anal, A. K. (2021). Development of antibacterial biocomposites reinforced with cellulose nanocrystals derived from banana pseudostem. *Carbohydrate Polymer Technologies and Applications*, 2, Article 100112. <https://doi.org/10.1016/j.carpta.2021.100112>

Srivastava, K. R., Singh, M. K., Mishra, P. K., & Srivastava, P. (2019). Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. *Journal of Polymer Research*, 26(4), Article 95. <https://doi.org/10.1007/s10965-019-1751-3>

Suchaiya, V., & Aht-Ong, D. D. (2013). Evaluation of mechanical and thermal properties of MCC/PLA composite compatibilized with modified cellulose. *Advanced Materials Research*, 747, 698–702. <https://doi.org/10.4028/www.scientific.net/AMR.747.698>

Suresh, A., Jayakumar, L., & Devaraju, A. (2020). Investigation of mechanical and wear characteristic of Banana/Jute fiber composite. *Materials Today: Proceedings*, 39, 324–330. <https://doi.org/10.1016/j.matpr.2020.07.426>

Tabassum, R. A., Shahid, M., Niazi, N. K., Dumat, C., Zhang, Y., Imran, M., Bakhat, H. F., Hussain, I., & Khalid, S. (2019). Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: A column-scale investigation. *International Journal of Phytoremediation*, 21(6), 509–518. <https://doi.org/10.1080/15226514.2018.1501340>

Taboada, M. (2016). Sentiment analysis: An overview from linguistics. *Annual Review of Linguistics*, 2, 325–347. <https://doi.org/10.1146/annurev-linguistics-011415-040518>

Tejada-Tovar, C., Gonzalez-Delgado, A. D., & Villabona-Ortiz, A. (2019). Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution. *Applied Sciences*, 9(21), Article 4486. <https://doi.org/10.3390/app9214486>

Tibolla, H., Czaikoski, A., Pelissari, F. M., Menegalli, F. C., & Cunha, R. L. (2020). Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments. *International Journal of Biological Macromolecules*, 161, 132–146. <https://doi.org/10.1016/j.ijbiomac.2020.05.194>

Tibolla, H., Pelissari, F. M., Rodrigues, M. I., & Menegalli, F. C. (2017). Cellulose nanofibers produced from banana peel by enzymatic treatment: Study of process conditions. *Industrial Crops and Products*, 95, 664–674. <https://doi.org/10.1016/j.indcrop.2016.11.035>

Torres-Ordoñez, L. H., Valenzuela-Cobos, J. D., Guevara-Viejó, F., Galindo-Villardón, P., & Vicente-Galindo, P. (2024). Effect of genotype × environment interactions on the yield and stability of sugarcane varieties in Ecuador: GGE biplot analysis by location and year. *Applied Sciences*, 14(15), Article 6665. <https://doi.org/10.3390/app14156665>

Valenzuela-Cobos, J. D., Grijalva-Endara, A., Marcillo-Vallejo, R., & Garcés-Moncayo, M. F. (2020). Production and characterization of reconstituted strains of *Pleurotus* spp. Cultivated on different agricultural wastes. *Revista Mexicana de Ingeniería Química*, 19(3), 1493–1504. <https://doi.org/10.24275/rmiq/Bio1126>

Valenzuela-Cobos, J. D., Guevara-Viejó, F., Grijalva-Endara, A., Vicente-Galindo, P., & Galindo-Villardón, P. (2023). Production and evaluation of *Pleurotus* spp. hybrids cultivated on ecuadorian agro-industrial wastes: Using multivariate statistical methods. *Sustainability*, 15(21), Article 15546. <https://doi.org/10.3390/su152115546>

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. *Scientometrics*, 84(2), 523–538. <https://doi.org/10.1007/s11192-009-0146-3>

Wahab, D. N. A., Siddique, M. B. M., Chew, J. J., Su, H. T., Khairuddin, N., Khaerudin, D. S., Hossain, M. S., & Sunarso, J. (2023). Characterization of starch biofilm reinforced with cellulose microfibers isolated from *Musa Saba'* midrib residue and its application as an active packaging film. *Journal of Applied Polymer Science*, 140(48), Article e54720. <https://doi.org/10.1002/app.54720>

Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. *Artificial Intelligence Review*, 55(7), 5731–5780. <https://doi.org/10.1007/s10462-022-10144-1>

Xu, S., Yu, W., Liu, S., Xu, C., Li, J., & Zhang, Y. (2018). Adsorption of hexavalent chromium using banana pseudostem biochar and its mechanism. *Sustainability*, 10(11), Article 4250. <https://doi.org/10.3390/su10114250>

Yadav, V. K., Chauhan, Y. K., Padhy, N. P., & Gupta, H. O. (2013). 66 A novel power sector restructuring model based on Data Envelopment Analysis (DEA). *International Journal of Electrical Power and Energy Systems*, 44(1), 629–637. <https://doi.org/10.1016/j.ijepes.2012.08.013>

Zeileis, A., Köl, S., & Graham, N. (2020). Various versatile variances: An object-oriented implementation of clustered covariances in R. *Journal of Statistical Software*, 95(1), 1–36. <https://doi.org/10.18637/jss.v095.i01>