Study on the polymeric treatment with rice husk silica on sisal fiber in cementicious composites

    Sudha P. Info
    Dineshkumar G. Info
    Loganathan P. Info
    Muralimohan N. Info
DOI: https://doi.org/10.3846/jeelm.2025.23566

Abstract

This research evaluates how treating sisal fibers with expanded polystyrene (EPS) and rice husk silica (RHS) affects their absorption capacity, tensile strength, and adhesion when used in Portland cement matrices. The study on sisal fibers treated with EPS and RHS polymers found that the treatment significantly reduced water absorption by 70%, from 84.67% for untreated fibers to 15.18% for treated ones, due to the hydrophobic nature of EPS. Optical microscopy revealed an irregular polymer layer on the fibers, which, while improving dimensional stability, could impair fiber-matrix interaction. Despite these improvements, the treatment did not notably enhance the mechanical properties of the fibers, as the breaking strength remained similar to untreated fibers, and the rupture displacement slightly decreased.

Keywords:

sisal fibers, cementicious composites, polymeric treatment, rice husk silica, expanded polystyrene (EPS)

How to Cite

P., S., G., D., P., L., & N., M. (2025). Study on the polymeric treatment with rice husk silica on sisal fiber in cementicious composites. Journal of Environmental Engineering and Landscape Management, 33(2), 242–258. https://doi.org/10.3846/jeelm.2025.23566

Share

Published in Issue
May 21, 2025
Abstract Views
17

References

Ahmad, J., Majdi, A., Deifalla, A. F., Ben Kahla, N., & El-Shorba­gy, M. A. (2022). Concrete reinforced with sisal fibers (SSF): Overview of mechanical and physical properties. Crystals, 12(7), Article 952. https://doi.org/10.3390/cryst12070952> https://doi.org/10.3390/cryst12070952

Bentur, A., & Mindess, S. (2007). Fibre reinforced cementitious composites (2nd ed.). Taylor & Francis Group. https://doi.org/10.1201/9781482267747> https://doi.org/10.1201/9781482267747

Bispo, S. J. L., Freire Júnior, R. C. S., Barbosa, J. F., Silva, C. C. da, & Cöuras Ford, E. T. L. (2022). Recycling of polypropylene and curaua fiber-based ecocomposites: Effect of reprocessing on mechanical properties. The Journal of Strain Analysis for Engineering Design, 57(2), 75–83. https://doi.org/10.1177/0309324721997652> https://doi.org/10.1177/0309324721997652

Bouafif, H., Mansouri, N., Abderrahmane, M., Ajji, A., & Lounis, Z. (2020). Durability of natural fiber composites: Effects of environmental exposure on mechanical performance. Polymer Composites, 41(7), 2792–2802.

Brancato, A. A. (2008). Effect of progressive recycling on cellulose fiber surface properties [Thesis, Georgia Institute of Technology]. Georgia. https://repository.gatech.edu/server/api/core/bitstreams/86142581-69c0-41ca-83c3-91f08e92360f/content> https://repository.gatech.edu/server/api/core/bitstreams/86142581-69c0-41ca-83c3-91f08e92360f/content

De Klerk, M. D., Kayondo, M., Moelich, G. M., de Villiers, W. I., Combrinck, R., & Boshoff, W. P. (2020). Durability of chemically modified sisal fibre in cement-based composites. Construction and Building Materials, 241, Article 117835. https://doi.org/10.1016/j.conbuildmat.2019.117835> https://doi.org/10.1016/j.conbuildmat.2019.117835

Defoirdt, N., Biswas, S., De Vriese, L., Tran, L. Q. N., Van Acker, J., Ahsan, Q., Gorbatikh, L., Van Vuure, A., & Verpoest, I. (2010). Assessment of the tensile properties of coir, bamboo and jute fibre. Composites Part A: Applied Science and Manufacturing, 41(5), 588–595. https://doi.org/10.1016/j.compositesa.2010.01.005> https://doi.org/10.1016/j.compositesa.2010.01.005

Fadele, O., Oguocha, I. N., Odeshi, A. G., Soleimani, M., & Tabil, L. G. (2019). Effect of chemical treatments on properties of raffia palm (Raphia farinifera) fibers. Cellulose, 26, 9463–9482. https://doi.org/10.1007/s10570-019-02764-8> https://doi.org/10.1007/s10570-019-02764-8

Fernandes, D. R., Silva, L. C., Miranda, R. D., & Alves, S. S. (2019). Use of micro-and nanoclays in polymer matrix composites for automotive applications. Composites Part A: Applied Science and Manufacturing, 127, Article 105655.

Ferreira, R. A. R., Meireles, C. S., Assunção, R. M. N., Barrozo, M. A. S., & Soares, R. R. (2020). Optimization of the oxidative fast pyrolysis process of sugarcane straw by TGA and DSC analyses. Biomass and Bioenergy, 134, Article 105456. https://doi.org/10.1016/j.biombioe.2019.105456> https://doi.org/10.1016/j.biombioe.2019.105456

Ferreira, S. R., Silva, F. de A., Lima, P. R. L., & Toledo Filho, R. D. (2017). Effect of hornification on the structure, tensile behavior and fiber matrix bond of sisal, jute and curauá fiber cement based composite systems. Construction and Building Materials, 139, 551–561. https://doi.org/10.1016/j.conbuildmat.2016.10.004> https://doi.org/10.1016/j.conbuildmat.2016.10.004

Gao, X., Lin, X., Xu, Y., Zhang, T., & Zhang, J. (2020). Enhancement of the mechanical properties of epoxy composites by the incorporation of modified nanoclay. Composites Part B: Engineering, 191, Article 107902.

Gopalakrishnan, D., Padmanaban, P., Nithyanandam, M., Pichaipillai, S., & Kaliyannan, S. K. (2023). Investigation on hybrid fiber reinforced concrete beam with basalt and polyester fiber. AIP Conferences Proceedings, 2782, Article 020171. https://doi.org/10.1063/5.0154375> https://doi.org/10.1063/5.0154375

Gram, H. E. (1983). Durability of natural fibres in concrete. Swedish Cement and Concrete Research Institute.

Hemath, M., Rangappa, S. M., Kushvaha, V., Dhakal, H. N., & Siengchin, S. (2020). A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polymer Composites, 41(10), 4384–4396. https://doi.org/10.1002/pc.25703> https://doi.org/10.1002/pc.25703

Kim, Y., Park, S., Lee, S., Kim, J., & Kwon, S. (2022). The effects of nanoclay on the properties of polymer nanocomposites: A review. Journal of Nanomaterials and Nanotechnology, 34(8), 320–330.

Li, Y., Mai, Y. W., & Ye, L. (2000). Sisal fibre and its composites: A review of recent developments. Composites Science and Technology, 60, 2037–2055. https://doi.org/10.1016/S0266-3538(00)00101-9> https://doi.org/10.1016/S0266-3538(00)00101-9

Lilargem Rocha, D., Tambara Júnior, L. U. D., Marvila, M. T., Pereira, E. C., Souza, D., & Azevedo, A. R. G. de. (2022). A review of the use of natural fibers in cement composites: Concepts, applications and Brazilian history. Polymers, 14(10), Article 2043. https://doi.org/10.3390/polym14102043> https://doi.org/10.3390/polym14102043

Lima, P. R. L., & Toledo Filho, R. D. (2008). Use of metakaolinite to increase the durability of cement-based composites reinforced with sisal fibers. Built Environment, 8, 7–19.

Melo Filho, J. A., Silva, F. A., & Toledo Filho, R. D. (2013). Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cement and Concrete Composites, 40, 30–39. https://doi.org/10.1016/j.cemconcomp.2013.04.003> https://doi.org/10.1016/j.cemconcomp.2013.04.003

Mohammed, M., Rahman, R., Mohammed, A. M., Tijjani, A., Be­tar, B. O., Osman, A. F., & Dahham, O. S. (2022). Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement. Polymer Testing, 115, Article 107707. https://doi.org/10.1016/j.polymertesting.2022.107707> https://doi.org/10.1016/j.polymertesting.2022.107707

Muthukumaran, S., Muralimohan, N., & Sudha, P. (2017). Experimental investigation on properties of concrete by the addition of carbon fiber. Indian Journal of Scientific Research, 17, 100–106.

Pichaipillai, S., Nithyanandam, M., Kaliyannan, S. K., Gopalakrish­nan, D., & Padmanaban, P. (2023). Strength attributes of clay and coconut shell as a partial substitute for cement and coarse aggregate in concrete. AIP Conferences Proceedings, 2782, Article 020172. https://doi.org/10.1063/5.0154411> https://doi.org/10.1063/5.0154411

Prakash, R., Raman, S. N., Subramanian, C., & Divyah, N. (2022). Eco-friendly fiber-reinforced concretes. In Handbook of sustainable concrete and industrial waste management (pp. 109–145). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821730-6.00031-0> https://doi.org/10.1016/B978-0-12-821730-6.00031-0

Prakash, R., Thenmozhi, R., Raman, S. N., Subramanian, C., & Di­vyah, N. (2021). Mechanical characterisation of sustainable fibre-reinforced lightweight concrete incorporating waste coconut shell as coarse aggregate and sisal fibre. International Journal of Environmental Science and Technology, 18(6), 1579–1590. https://doi.org/10.1007/s13762-020-02900-z> https://doi.org/10.1007/s13762-020-02900-z

Silva, F. de A., Mobasher, B., Soranakom, C., & Toledo Filho, R. D. (2011). Effect of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement based composites. Cement and Concrete Composites, 33(8), 814–823. https://doi.org/10.1016/j.cemconcomp.2011.05.003> https://doi.org/10.1016/j.cemconcomp.2011.05.003

Singh, R., Kumar, A., Kumar, M., Pradhan, S., & Rai, A. (2020). Durability of natural fiber reinforced composites in harsh environments: Recent advances and future prospects. Journal of Cleaner Production, 267, Article 122131.

Toledo Filho, R. D., Silva, F. de A., Fairbairn, E. M. R., & Filho, J. de A. M. (2009). Durability of compression molded sisal fiber reinforced mortar laminates. Construction and Building Materials, 23(6), 2409–2420. https://doi.org/10.1016/j.conbuildmat.2008.10.012> https://doi.org/10.1016/j.conbuildmat.2008.10.012

Tonietto, L., Gonzaga, L., Veronez, M. R., Kazmierczak, C. D. S., Arnold, D. C. M., & Costa, C. A. D. (2019). New method for evaluating surface roughness parameters acquired by laser scanning. Scientific Reports, 9, Article 15038. https://doi.org/10.1038/s41598-019-51545-7> https://doi.org/10.1038/s41598-019-51545-7

Vinay, S. S., Sanjay, M. R., Siengchin, S., & Venkatesh, C. V. (2020). Effect of Al₂O₃ nanofillers in basalt/epoxy composites: Mechanical and tribological properties. Polymer Composites, 42(6), 2664–2674. https://doi.org/10.1002/pc.25927> https://doi.org/10.1002/pc.25927

Wei, J., & Meyer, C. (2015). Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research, 73, 1–16. https://doi.org/10.1016/j.cemconres.2015.02.019> https://doi.org/10.1016/j.cemconres.2015.02.019

Yan, L., Chouw, N., Huang, L., & Kasal, B. (2016). Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials, 112, 168–182. https://doi.org/10.1016/j.conbuildmat.2016.02.182> https://doi.org/10.1016/j.conbuildmat.2016.02.182

Yimer, T., & Gebre, A. (2023). Effect of fiber treatments on the mechanical properties of sisal fiber-reinforced concrete composites. Advances in Civil Engineering, 2023, Article 2293857. https://doi.org/10.1155/2023/2293857> https://doi.org/10.1155/2023/2293857

Zhang, L., Liu, X., Wang, H., Li, M., & Zhang, J. (2022). Nanocomposites based on polyamide 6 and carbon nanotubes: Preparation, mechanical properties, and thermal conductivity. Polymer Composites, 43(4), 345–355.

View article in other formats

CrossMark check

CrossMark logo

Published

2025-05-21

Issue

Section

Articles

How to Cite

P., S., G., D., P., L., & N., M. (2025). Study on the polymeric treatment with rice husk silica on sisal fiber in cementicious composites. Journal of Environmental Engineering and Landscape Management, 33(2), 242–258. https://doi.org/10.3846/jeelm.2025.23566

Share