Improving the efficiency of using an electric scooter in urban electromobility

    Jacek Caban Info
    Aleksander Nieoczym Info
    Edgar Sokolovskij Info
    Kazimierz Drozd Info
DOI: https://doi.org/10.3846/transport.2025.25948

Abstract

The popularity of electric scooters as an individual means of transport results from their availability in the urban sharing system, ease of movement in the city and reduction of driving time compared to other means of passenger transport. The user can choose from a whole range of vehicles with different driving range and equipment with elements increasing the functionality of using the scooter. The article presents a proposal for changes to the design of a typical electric scooter. The main objective of the work is the engineering design of suspension and braking systems, in particular the swing arm suspension of the front and rear wheels and an additional disc brake. Increasing the diameter of the wheels and equipping it with a front and rear suspension system allowed for the reduction of vibrations and shocks transferred to the vehicle when driving on uneven surfaces. The results of analytical calculations confirming the positive effects of the introduced modifications were included. Adding a disc brake allowed for shortening the braking distance from 13.7 to 8.9 m, which has a positive effect on driving safety. A Finite Element Method (FEM) strength analysis was also performed, the results of which confirm the correctness of the new design. The modernized design improved the ride comfort and safety of using the electric scooter.

First published online 9 February 2026

Keywords:

brake system, design, electric scooter, FEM, solid model, suspension system, urban transport

How to Cite

Caban, J., Nieoczym, A., Sokolovskij, E., & Drozd, K. (2025). Improving the efficiency of using an electric scooter in urban electromobility. Transport, 40(4), 343–353. https://doi.org/10.3846/transport.2025.25948

Share

Published in Issue
December 31, 2025
Abstract Views
104

References

Bąkowski, H.; Czech, P. 2014. Wear estimation of the wheel tyre in different service conditions, Transport Problems 9(2): 119–127. Available from Internet: http://transportproblems.polsl.pl/pl/Archiwum/2014/zeszyt2/2014t9z2_14.pdf

Barslund, R. 2025. The Best Electric Scooters in 2025: Our Top Picks Based on Thousands of Miles of Real-World Testing. Available from Internet: https://eridehero.com/best-electric-scooters

Bartuska, L.; Hanzl, J. 2019. Assessment of modern approaches in the area of road traffic flow monitoring, in Transport Means 2019: Proceedings of the 23rd International Conference, 2–4 October 2019, Palanga, Lithuania, 3: 1070-1074.

Bartuska, L.; Stopka, O.; Hanzl, J.; Sedivy, J.; Rybicka, I. 2022. Changes in transport behaviour of the Czech population caused by state of emergency, Transport Problems 17(1): 101–114. https://doi.org/10.20858/tp.2022.17.1.09

Blatnický, M.; Dižo, J.; Molnár, D.; Suchánek, A. 2022. Comprehensive analysis of a tricycle structure with a steering system for improvement of driving properties while cornering, Materials 15(24): 8974. https://doi.org/10.3390/ma15248974

Blatnický, M.; Dižo, J.; Sága, M.; Molnár, D.; Slíva, A. 2023. Utilizing dynamic analysis in the complex design of an unconventional three-wheeled vehicle with enhancing cornering safety, Machines 11(8): 842. https://doi.org/10.3390/machines11080842

Bogucki, M.; Krzysiak, Z.; Samociuk, W.; Cechowicz, R. 2020. Nadzorowanie procesu wtryskiwania tworzyw termoplastycznych z wykorzystaniem wielowymiarowych kart kontrolnych, Przemysł Chemiczny 99(11): 1631–1635. https://doi.org/10.15199/62.2020.11.8 (in Polish).

Bulkova, Z.; Gašparik, J. 2024. Comparison of the process of public tender and direct award in rail passenger transport in Slovakia, Transportation Research Procedia 77: 143–150. https://doi.org/10.1016/j.trpro.2024.01.019

Caban, J.; Nieoczym, A.; Matijošius, J.; Kilikevičius, A.; Drozd, K. 2024. Analysis of the construction of the car trailer frame in terms of changing the assembly technology, Scientific Journal of Silesian University of Technology. Series Transport – Zeszyty Naukowe Politechniki Śląskiej. Seria Transport 124: 47–61. https://doi.org/10.20858/sjsutst.2024.124.4

Caban, J.; Szala, M.; Walczak, M.; Misztal, W.; Barta, D.; Dižo, J.; Marczuk, A. 2019. Fizyczne właściwości elementów z polilaktydu wykonanych techniką przyrostową, Przemysł Chemiczny 98(10): 1635–1638. https://doi.org/10.15199/62.2019.10.21 (in Polish).

Campisi, T.; Vianello, C.; Kuşkapan, E.; Çodur, M.Y.; De Cet, G. 2023. Improving the management of operations of the e-scooter services in sicily: a first step of a descriptive statistical survey, Komunikácie – vedecké listy Žilinskej univerzity v Žiline / Communications – Scientific Letters of the University of Žilina 25(4): A164–A174. https://doi.org/10.26552/com.C.2023.072

Cao, Z. 2025. Understanding how street environment affects e-scooter mode choice through travel experience, Cities 158: 105511. https://doi.org/10.1016/j.cities.2024.105511

Coutiño-Moreno, E.; Estrada, Q.; Maldonado-Onofre, D.; Rodriguez-Mendez, A.; Gomez-Giron, J. 2021. Resolution in the 3D modeling of objects for additive manufacturing and reverse engineering – shutter effect, Applied Computer Science 17(1): 40–52. https://doi.org/10.35784/acs-2021-04

Dąbrowska, K.; Nowak, R.; Rumianek, P.; Seńko, J. 2022. construction and validation of simulation models of samples made from 316L steel by applying additive technique, Materials 15(18): 6244. https://doi.org/10.3390/ma15186244

Dižo, J.; Blatnický, M.; Lovska, A.; Molnár, D.; Šuvada, R. 2025. An engineering design of a scooter, Mechanisms and Machine Science 174: 635–644. https://doi.org/10.1007/978-3-031-80512-7_62

Dudziak, A.; Caban, J. 2022. The urban transport strategy on the example of the city bike system in the city of Lublin in relation to the COVID-19 pandemic, LOGI – Scientific Journal on Transport and Logistics 13(1): 1–12. https://doi.org/10.2478/logi-2022-0001

Dziewiątkowski, M.; Szpica, D. 2021. Catalyst conversion rates measurement on engine fueled with compressed natural gas (CNG) using different operating temperatures, Mechanika 27(6): 492–497. https://doi.org/10.5755/j02.mech.30164

Estrada, Q.; Szwedowicz, D.; Vergara, J. C.; Solis, J.; Paredes, M. A.; Wiebe, L.; Silva, J. M. 2019. Numerical simulations of sandwich structures under lateral compression, Applied Computer Science 15(2): 31–41. https://doi.org/10.35784/acs-2019-11

Firlej, M.; Bogucki, M.; Gil, L.; Samociuk, W.; Domagała, I.; Bartnik, G.; Pieniak, D.; Krzysiak, Z.; Biedziak, B. 2021. Analiza indentacyjnej twardości, odporności na zarysowania i zużycia ślizgowego polimerowych materiałów z żywicy 3D DLP UV, Przemysł Chemiczny 100(1): 67–72. https://www.doi.org/10.15199/62.2021.1.7 (in Polish).

Gechev, T.; Punov, P. 2020. Driving strategy for minimal energy consumption of an ultra-energy-efficient vehicle in Shell eco-marathon competition, IOP Conference Series: Materials Science and Engineering 1002: 012018. https://doi.org/10.1088/1757-899X/1002/1/012018

Gogola, M. 2020. Analysing the vibration of bicycles on various road surfaces in the city of Zilina, The Archives of Automotive Engineering – Archiwum Motoryzacji 88(2): 77–97. https://doi.org/10.14669/am.vol88.art6

Hamerska, M.; Ziółko, M.; Stawiarski, P. 2022. A sustainable transport system – the MMQUAL model of shared micromobility service quality assessment, Sustainability 14(7): 4168. https://doi.org/10.3390/su14074168

Hanselman, D. C. 2006. Brushless Motors: Magnetic Design, Performance, and Control of Brushless DC and Permanent Magnet Synchronous Motors. E-Man Press LLC. 656 p.

Hunicz, J.; Kordos, P. 2009. Experimental study of the gasoline engine operated in spark ignition and controlled auto-ignition combustion modes, SAE Technical Papers 2009-01-2667. https://doi.org/10.4271/2009-01-2667

ISO 4210-2:2023. Cycles. Safety requirements for bicycles. Part 2: Requirements for City and Trekking, Young Adult, Mountain and Racing Bicycles.

Jenis, J.; Ondriga, J.; Hrcek, S.; Brumercik, F.; Cuchor, M.; Sadovsky, E. 2023. Engineering applications of artificial intelligence in mechanical design and optimization, Machines 11(6): 577. https://doi.org/10.3390/machines11060577

Jilek, P. 2023. Vehicle wheel positioning innovation on a machine for measuring the contact parameters between a tyre and the road, The Archives of Automotive Engineering – Archiwum Motoryzacji 100(2): 31–43. https://doi.org/10.14669/am/166399

Jilek, P.; Berg, J.; Tchuigwa, B. S. S. 2022. Influence of the weld joint position on the mechanical stress concentration in the construction of the alternative skid car system′s skid chassis, Applied Sciences 12(1): 397. https://doi.org/10.3390/app12010397

Jilek, P.; Cerman, J. 2020. Design of sliding frame system for two-wheeled vehicle, in Transport Means 2020: Proceedings of the 24rd International Conference, 30 September – 2 October 2020, Kaunas, Lithuania, 136–141.

Kalašová, A.; Paľo, J.; Černický, Ľ.; Čulík, K. 2024. Research on the impact of flexible working hours on reducing traffic delays in the city, Applied Sciences 14(17): 7941. https://doi.org/10.3390/app14177941

Karpenko, M.; Prentkovskis, O.; Skačkauskas, P. 2024. Numerical simulation of vehicle tyre under various load conditions and its effect on road traffic safety, Promet – Traffic & Transportation 36(1): 1–11. https://doi.org/10.7307/ptt.v36i1.265

Kowalik, M.; Rucki, M.; Paszta, P.; Gołȩbski, R. 2016. Plastic deformations of measured object surface in contact with undeformable surface of measuring tool, Measurement Science Review 16(5): 254–259. https://doi.org/10.1515/msr-2016-0031

Kozłowski, E.; Wiśniowski, P.; Gis, M.; Zimakowska-Laskowska, M.; Borucka, A. 2024. Vehicle acceleration and speed as factors determining energy consumption in electric vehicles, Energies 17(16): 4051. https://doi.org/10.3390/en17164051

Kubalák, S.; Gogola, M.; Černý, M. 2021. Options for assessing the impact of the bike-sharing system on mobility in the city Žilina, Transportation Research Procedia 55: 378–386. https://doi.org/10.1016/j.trpro.2021.07.173

KugooEU Scooter. 2025. Kukirin S3 Pro User Manual. Available from Internet: https://kugoo.eu/pages/user-manual

Kukla, M.; Wieczorek, B.; Warguła, Ł.; Berdychowski, M. 2021. An analytical model of the demand for propulsion torque during manual wheelchair propelling, Disability and Rehabilitation: Assistive Technology 16(1): 9–16. https://doi.org/10.1080/17483107.2019.1629109

Lukac, M.; Brumercik, F.; Krzywonos, L. 2016. Driveability simulation of vehicle with variant tire properties, Komunikácie – vedecké listy Žilinskej univerzity v Žiline / Communications – Scientific Letters of the University of Žilina 18(2): 34–37. https://doi.org/10.26552/com.C.2016.2.34-37

Ľupták, V.; Bartuška, L.; Hanzl, J. 2018. Assessment of connection quality on transport networks applying the empirical models in traffic planning: a case study, in Transport Means 2018: Proceedings of the 22nd International Conference, 3–5 October 2018, Trakai, Lithuania, 1: 236–240.

Małek, A.; Taccani, R. 2021. Innovative approach to electric vehicle diagnostics, The Archives of Automotive Engineering – Archiwum Motoryzacji 92(2): 49–67. https://doi.org/10.14669/am.vol92.art4

Matuš, M.; Bechný, V.; Joch, R.; Drbúl, M.; Holubják, J.; Czán, A.; Novák, M.; Šajgalík, M. 2023. Geometric accuracy of components manufactured by SLS technology regarding the orientation of the model during 3D printing, Manufacturing Technology 23(2), 233–240. https://doi.org/10.21062/mft.2023.027

Mazur, T.; Rucki, M.; Gutsalenko, Y. 2023. Accuracy analysis of the curved profile measurement with CMM: a case study, Facta Universitatis. Series: Mechanical Engineering 21(1): 121–135. https://doi.org/10.22190/fume210507063M

Mikušová, N.; Fedorko, G.; Molnár, V.; Hlatká, M.; Kampf, R.; Sirková, V. 2021. Possibility of a solution of the sustainability of transport and mobility with the application of discrete computer simulation – a case study, Sustainability 13(17): 9816. https://doi.org/10.3390/su13179816

Moosavi, S. M. H.; Ma, Z.; Armaghani, D. J.; Aghaabbasi, M.; Ganggayah, M. D.; Wah, Y. C.; Ulrikh, D. V. 2022. Understanding and predicting the usage of shared electric scooter services on university campuses, Applied Sciences 12(18): 9392. https://doi.org/10.3390/app12189392

Nadolski, R.; Ludwinek, K.; Staszak, J.; Jaśkiewicz, M. 2012. Utilization of BLDC motor in electrical vehicles, Przegląd Elektrotechniczny 88(4A): 180–186. Available from Internet: https://archiwum.pe.org.pl/articles/2012/4a/44.pdf

Paľo, J.; Stopka, O. 2021. On-site traffic management evaluation and proposals to improve safety of access to workplaces, Komunikácie – vedecké listy Žilinskej univerzity v Žiline / Communications – Scientific Letters of the University of Žilina 23(3): A125–A136. https://doi.org/10.26552/com.C.2021.3.A125-A136

Pashechko, M.; Dziedzic, K.; Jozwik, J. 2020. Analysis of wear resistance of borided steel C45, Materials 13(23): 5529. https://doi.org/10.3390/ma13235529

Pistoia, G. 2009. Battery Operated Devices and Systems: from Portable Electronics to Industrial Products. Elsevier Science. 408 p. https://doi.org/10.1016/B978-0-444-53214-5.X0001-5

PN-EN 15194+A1:2024-01. Bicycles. Electrically assisted bicycles. EPAC two-wheelers.

Pompáš, L.; Brumerčík, F.; Kučera, Ľ.; Smetanka, L. 2023. Design of a bicycle′s structural components and a comparison of their characteristics in steel, aluminum and carbo, Komunikácie – vedecké listy Žilinskej univerzity v Žiline / Communications – Scientific Letters of the University of Žilina 25(3): B259–B267. https://doi.org/10.26552/com.C.2023.061

Proszek, Ł. 2026. Najlepsza Hulajnoga Elektryczna: Ranking 2026. Available from Internet: https://www.prorankingi.pl/rankingi/sport/hulajnoga-elektryczna (in Polish).

Rathouský, B.; Mervart, M. 2023. The cycling transport in Prague, Perner′s Contacts 18(2): 2453. https://doi.org/10.46585/pc.2023.2.2453

Road Traffic Act 1988. UK Public General Acts. Available from Internet: https://www.legislation.gov.uk/ukpga/1988/52/contents

Rumianek, P.; Żach, P.; Nowak, R.; Kosiński, P. 2019. Structural analysis of PVC-CF composite materials, in CAE 2018: Proceedings of the 14th International Scientific Conference: Computer Aided Engineering, 20–23 June 2018, Wroclaw, Poland, 619–626. https://doi.org/10.1007/978-3-030-04975-1_71

Šarkan, B.; Hudec, J.; Sejkorova, M.; Kuranc, A.; Kiktova, M. 2021. Calculation of the production of exhaust emissions in the laboratory conditions, Journal of Physics: Conference Series 1736(1): 012022. https://doi.org/10.1088/1742-6596/1736/1/012022

Šarkan, B.; Stopka, O.; Li, C. 2017. The issues of measuring the exterior and interior noise of road vehicles, Komunikácie – vedecké listy Žilinskej univerzity v Žiline / Communications – Scientific Letters of the University of Žilina 19(2): 50–55. https://doi.org/10.26552/com.C.2017.2.50-55

Sawa, M.; Szala, M.; Henzler, W. 2021. Innovative device for tensile strength testing of welded joints: 3D modelling, fem simulation and experimental validation of test rig – a case study, Applied Computer Science 17(3): 92–105. https://doi.org/10.35784/acs-2021-24

Sendek-Matysiak, E.; Rzedowski, H.; Skrucany, T. 2020. Electromobility in Poland and Slovakia. Benchmarking of electric vehicles for 2019, Komunikácie – vedecké listy Žilinskej univerzity v Žiline / Communications – Scientific Letters of the University of Žilina 22(4): 35–45. https://doi.org/10.26552/com.C.2020.4.35-45

Setiyo, M. 2023. Sustainable transport: the role of clean energy, mass rapid transit, non-motorized mobility, and challenges to achievement, Automotive Experiences 6(1): 1–3. https://doi.org/10.31603/ae.9108

Shekhovtsov, A.; Więckowski, J.; Kizielewicz, B.; Sałabun, W. 2022. Towards reliable decision-making in the green urban transport domain, Facta Universitatis. Series: Mechanical Engineering 20(2): 381–398. https://doi.org/10.22190/fume210315056S

Skrúcaný, T.; Šarkan, B.; Figlus, T.; Synák, F.; Vrábel, J. 2017. Measuring of noise emitted by moving vehicles, MATEC Web of Conferences 107: 00072. https://doi.org/10.1051/matecconf/201710700072

Stopka, O.; Kampf, R.; Vrábel, J. 2016. Deploying the means of transport with in the transport enterprises in the context of emission standards, in Transport Means 2016: Proceedings of the 20th International Conference, Juodkrantė, Lithuania, 5–7 October 2016, 185–190.

Świtała, M. 2023. Road infrastructure management – the perspective of the local roads authority, Scientific Journal of Silesian University of Technology. Series Transport – Zeszyty Naukowe Politechniki Śląskiej. Seria Transport 120: 269–283. https://doi.org/10.20858/sjsutst.2023.120.17

Szemere, D.; Nemeslaki, A. 2023. The implications of electric scooters as a new technology artifact in urban transportation, Acta Polytechnica Hungarica 20(9): 227–240. https://doi.org/10.12700/aph.20.9.2023.9.13

Timokhovets, V. D.; Babich, T. G.; Rafeykova, E. S. 2025. Assessment of the degree of influence of vehicle changes on road surface wear, Lecture Notes in Civil Engineering 565: 394–404. https://doi.org/10.1007/978-3-031-80482-3_38

Turoń, K.; Kubik, A.; Folęga, P.; Chen, F. 2023. Perception of shared electric scooters: a case study from Poland, Sustainability 15(16): 12596. https://doi.org/10.3390/su151612596

Turoń, K.; Sierpiński, G. 2018. Bike-sharing as a possibility to support vision zero, MATEC Web of Conferences 231: 03005. https://doi.org/10.1051/matecconf/201823103005

Van, Tu. N.; Thanh, T. L.; Van, Tr. N.; Naprstkova, N. 2023. Smartphone-based data acquisition method for modelling 3D printed arm casts, Manufacturing Technology 23(2): 260–267. https://doi.org/10.21062/mft.2023.019

Virin, A.; Khongsomchit, L.; Kaewunruen, S. 2025. Deep learning application to roughness classification of road surface conditions through an e-scooter′s ride quality, Frontiers in Built Environment 11: 1497331. https://doi.org/10.3389/fbuil.2025.1497331

Wieczorek, B.; Kukla, M.; Warguła, Ł. 2020. Methods for measuring the position of the centre of gravity of an anthropotechnic human-wheelchair system in dynamic conditions, IOP Conference Series: Materials Science and Engineering 776(1): 012062. https://doi.org/10.1088/1757-899X/776/1/012062

Yang, H.; Ma, Q.; Wang, Z.; Cai, Q.; Xie, K.; Yang, D. 2020. Safety of micro-mobility: analysis of e-scooter crashes by mining news reports, Accident Analysis & Prevention 143: 105608. https://doi.org/10.1016/j.aap.2020.105608

Zimakowska-Laskowska, M.; Laskowski, P. 2024. Comparison of pollutant emissions from various types of vehicles, Combustion Engines 197(2): 139–145. https://doi.org/10.19206/CE-181193

View article in other formats

CrossMark check

CrossMark logo

Published

2025-12-31

Issue

Section

Original Article

How to Cite

Caban, J., Nieoczym, A., Sokolovskij, E., & Drozd, K. (2025). Improving the efficiency of using an electric scooter in urban electromobility. Transport, 40(4), 343–353. https://doi.org/10.3846/transport.2025.25948

Share