Share:


Research on the noise pollution from different vehicle categories in the urban area

    Algimantas Danilevičius Affiliation
    ; Mykola Karpenko Affiliation
    ; Vítězslav Křivánek Affiliation

Abstract

The noise pollution inside urban areas is one of the common problems for the inhabitants. The different levels of a noise are generated from the large amount of sources, including traffic flow on a road of urban areas. Therefore, it is essential to measure and evaluate the road traffic noise in urban areas and its population exposure in order to obtain models of a traffic noise as well as the noise mapping. The current research includes establishing a traffic noise from the different types of vehicles caused by the speed in urban areas and different road pavements (dry, wet and covered with a snow) with generalising the obtained data for more accurate using in future traffic noise models and the noise mapping. The study region is Vilnius (Lithuania), the speed range for different categories of the vehicles in the collected data is 40…130 km/h, with wide ranges of a noise level 20…180 dB. The approach presented in this research of experimental measurements is based on Statistical Pass-By (SPB) method with data proceeding upon implementation of Pearson correlation coefficient. In course of the analysis of the obtained results, it was found that the level of the curves of noise depends on the vehicles’ speed what corresponds to the best-measured values and can be used in the traffic noise models and the noise mapping.

Keyword : noise pollution, vehicle, traffic, correlation coefficient, speed, road pavement, sound level, urban area, SPB method

How to Cite
Danilevičius, A., Karpenko, M., & Křivánek, V. (2023). Research on the noise pollution from different vehicle categories in the urban area. Transport, 38(1), 1–11. https://doi.org/10.3846/transport.2023.18666
Published in Issue
Feb 28, 2023
Abstract Views
1263
PDF Downloads
1060
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Babisch, W.; Swart, W.; Houthuijs, D.; Selander, J.; Bluhm, G.; Pershagen, G.; Dimakopoulou, K.; Haralabidis, A. S.; Katsouyanni, K.; Davou, E.; Sourtzi, P.; Cadum, E.; Vigna-Taglianti, K.; Floud, S.; Hansell, A. L. 2012. Exposure modifiers of the relationships of transportation noise with high blood pressure and noise annoyance, The Journal of the Acoustical Society of America 132(6): 3788–3808. https://doi.org/10.1121/1.4764881

Bravo, T. 2017. An analytical study on the amplification of the tyre rolling noise due to the horn effect, Applied Acoustics 123: 85–92. https://doi.org/10.1016/j.apacoust.2017.03.009

Bunn, F.; Zannin, P. H. T. 2016. Assessment of railway noise in an urban setting, Applied Acoustics 104: 16–23. https://doi.org/10.1016/j.apacoust.2015.10.025

Buratti, C.; Belloni, E.; Moretti, E. 2014. Facade noise abatement prediction: new spectrum adaptation terms measured in field in different road and railway traffic conditions, Applied Acoustics 76: 238–248. https://doi.org/10.1016/j.apacoust.2013.08.016

Cai, M.; Lan, Z.; Zhang, Z.; Wang, H. 2019. Evaluation of road traffic noise exposure based on high-resolution population distribution and grid-level noise data, Building and Environment 147: 211–220. https://doi.org/10.1016/j.buildenv.2018.08.037

Cai, M.; Yao, Y., Wang, H. 2018. Urban traffic noise maps under 3D complex building environments on a supercomputer, Journal of Advanced Transportation 2018: 7031418. https://doi.org/10.1155/2018/7031418

Cai, M.; Yao, Y.; Wang, H. 2017a. A traffic-noise-map update method based on monitoring data, The Journal of the Acoustical Society of America 141(4): 2604–2610. https://doi.org/10.1121/1.4979808

Cai, M.; Zhong, S.; Wang, H.; Chen, Y.; Zeng, W. 2017b. Study of the traffic noise source intensity emission model and the frequency characteristics for a wet asphalt road, Applied Acoustics 123: 55–63. https://doi.org/10.1016/j.apacoust.2017.03.006

Can, A.; Leclercq, L.; Lelong, J.; Botteldooren, D. 2010. Traffic noise spectrum analysis: dynamic modeling vs. experimental observations, Applied Acoustics 71(8): 764–770. https://doi.org/10.1016/j.apacoust.2010.04.002

Coelho, J. B.; Vogiatzis, K.; Licitra, G. 2011. The CNOSSOS-EU initiative: a framework for road, railway, aircraft and industrial noise modelling for strategic noise mapping in EU Member States, in 18th International Congress on Sound and Vibration 2011 (ICSV 18), 10–14 July 2011, Rio de Janeiro, Brazil, 1: 789–795.

Cueto, J. L.; Petrovici, A. M.; Hernández, R.; Fernández, F. 2017. Analysis of the impact of bus signal priority on urban noise, Acta Acustica United with Acustica 103(4): 561–573.

Del Pizzo, L. G.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. 2020. Influence of texture on tyre road noise spectra in rubberized pavements, Applied Acoustics 159: 107080. https://doi.org/10.1016/j.apacoust.2019.107080

Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F. R.; Gaughan, A. E.; Blondel, V. D.; Tatem, A. J. 2014. Dynamic population mapping using mobile phone data, Proceedings of the National Academy of Sciences (PNAS) 111(45): 15888–15893. https://doi.org/10.1073/pnas.1408439111

Di, H.; Liu, X.; Zhang, J.; Tong, Z.; Ji, M.; Li, F.; Feng, T.; Ma, Q. 2018. Estimation of the quality of an urban acoustic environment based on traffic noise evaluation models, Applied Acoustics 141: 115–124. https://doi.org/10.1016/j.apacoust.2018.07.010

EC. 2017. Report from the Commission to the European Parliament and the Council on the Implementation of the Environmental Noise Directive in Accordance with Article 11 of Directive 2002/49/EC. COM/2017/0151 final. European Commission (EC). Available from Internet: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52017DC0151

Gallo, P.; Fredianelli, L.; Palazzuoli, D.; Licitra, G.; Fidecaro, F. 2016. A procedure for the assessment of wind turbine noise, Applied Acoustics 114: 213–217. https://doi.org/10.1016/j.apacoust.2016.07.025

Gardziejczyk, W. 2014. Influence of road pavement macrotexture on tyre/road noise of vehicles, The Baltic Journal of Road and Bridge Engineering 9(3):180–190. https://doi.org/10.3846/bjrbe.2014.23

Huang, H. B.; Huang, X. R.; Li, R. X.; Lim, T. C.; Ding, W. P. 2016. Sound quality prediction of vehicle interior noise using deep belief networks, Applied Acoustics 113: 149–161. https://doi.org/10.1016/j.apacoust.2016.06.021

Hespanhol, L.; Vallio, C. S.; Costa, L. M.; Saragiotto, B. T. 2019. Understanding and interpreting confidence and credible intervals around effect estimates, Brazilian Journal of Physical Therapy 23(4): 290–301. https://doi.org/10.1016/j.bjpt.2018.12.006

Iglesias-Merchan, C.; Diaz-Balteiro, L.; Soliño, M. 2015. Transportation planning and quiet natural areas preservation: aircraft overflights noise assessment in a National Park, Transportation Research Part D: Transport and Environment 41: 1–12. https://doi.org/10.1016/j.trd.2015.09.006

Ihemeje, J.; Onyelowe, K. C. 2021. State-of-the-art review on the assessment and modelling of traffic noise intensity on roadside dwellers: the Port Harcourt, Nigeria case, Cleaner Engineering and Technology 5: 100328. https://doi.org/10.1016/j.clet.2021.100328

ISO 717-1:2020. Acoustics – Rating of Sound Insulation in Buildings and of Building Elements – Part 1: Airborne Sound Insulation.

ISO 10844:2021. Acoustics – Specification of Test Tracks for Measuring Sound Emitted by Road Vehicles and Their Tyres.

ISO 11819-1:2023. Acoustics – Measurement of the Influence of Road Surfaces on Traffic Noise – Part 1: Statistical Pass-by Method.

Jung, W.; Elliott, S. J.; Cheer, J. 2019. Local active control of road noise inside a vehicle, Mechanical Systems and Signal Processing 121: 144–157. https://doi.org/10.1016/j.ymssp.2018.11.003

Kephalopoulos, S.; Paviotti, M.; Anfosso-Lédée, F.; Van Maercke, D.; Shilton, S.; Jones, N. 2014. Advances in the development of common noise assessment methods in Europe: the CNOSSOS-EU framework for strategic environmental noise mapping, Science of the Total Environment 482–483: 400–410. https://doi.org/10.1016/j.scitotenv.2014.02.031

Kim, Y.-D.; Jeong, J.-E.; Park, J.-S.; Yang, I.-H.; Park, T.-S.; Muhamad, P. B.; Choi, D.-H.; Oh, J.-E. 2013. Optimization of the lower arm of a vehicle suspension system for road noise reduction by sensitivity analysis, Mechanism and Machine Theory 69: 278–302. https://doi.org/10.1016/j.mechmachtheory.2013.06.010

Kleizienė, R.; Šernas, O.; Vaitkus, A.; Simanavičienė, R. 2019. Asphalt pavement acoustic performance model, Sustainability 11(10): 2938. https://doi.org/10.3390/su11102938

Ko, J. H.; Chang, S. I.; Kim, M.; Holt, J. B.; Seong, J. C. 2011. Transportation noise and exposed population of an urban area in the Republic of Korea, Environment International 37(2): 328–334. https://doi.org/10.1016/j.envint.2010.10.001

Kudźma, Z.; Stosiak, M. 2013. Reduction of infrasounds in machines with hydrostatic drive, Acta of Bioengineering and Biomechanics 15(2): 51–64. https://doi.org/10.5277/abb130206

Lercher, P.; Evans, G. W.; Meis, M. 2003. Ambient noise and cognitive processes among primary schoolchildren, Environment and Behavior 35(6): 725–735. https://doi.org/10.1177/0013916503256260

Li, Z. 2018. Spectral comparison of pass-by traffic noise, in ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018, 26–29 August 2018, Chicago, IL, US, 1–8. https://doi.org/10.1115/NCAD2018-6149

Licitra, G.; Ascari, E.; Brambilla, G. 2012. Comparative analysis of methods to estimate urban noise exposure of inhabitants, Acta Acustica United with Acustica 98(4): 659–666.

Licitra, G.; Ascari, E.; Fredianelli, L. 2017. Prioritizing process in action plans: a review of approaches, Current Pollution Reports 3(2): 151–161. https://doi.org/10.1007/s40726-017-0057-5

Masovic, M.; Mijic, M.; Sumarac Pavlovic, D. 2013. Comparison between the spectrum shape of traffic noise in Belgrade and the ISO 717-1 reference spectrum, Proceedings of the InterNoise 2013, 15–18 September 2013, Innsbruck, Austria, 2370–2375.

Menge, C. W.; Rossano, C. F.; Anderson, G. S.; Bajdek, C. J. 1998. FHWA Traffic Noise Model, Version 1.0. Technical Manual. Report No FHWA-PD-96-010, DOT-VNTSC-FHWA-98-2. US Department of Transportation, Federal Highway Administration (FHWA), Washington, DC, US. 186 p. Available from Internet: https://rosap.ntl.bts.gov/view/dot/10000

Mesihovic, M.; Rindel, J. H.; Milford, I. 2016. The need for updated traffic noise spectra, used for calculation of sound insulation of windows and facades, in Proceedings of the InterNoise 2016, 21–24 August 2016, Hamburg, Germany, 3890–3897.

Miedema, H. M.; Oudshoorn, C. G. 2001. Annoyance from transportation noise: relationships with exposure metrics DNL and DENL and their confidence intervals, Environmental Health Perspectives 109(4): 409–416. https://doi.org/10.1289/ehp.01109409

Mukaka, M. M. 2012. Statistics corner: a guide to appropriate use of correlation coefficient in medical research, Malawi Medical Journal 24(3): 69–71.

Murphy, E.; King, E. A. 2011. Scenario analysis and noise action planning: modelling the impact of mitigation measures on population exposure, Applied Acoustics 72(8): 487–494. https://doi.org/10.1016/j.apacoust.2010.10.006

Muzet, A. 2007. Environmental noise, sleep and health, Sleep Medicine Reviews 11(2): 135–142 https://doi.org/10.1016/j.smrv.2006.09.001

Pathak, V.; Tripathi, B. D.; Mishra, V. K. 2008. Evaluation of traffic noise pollution and attitudes of exposed individuals in working place, Atmospheric Environment 42(16): 3892–3898. https://doi.org/10.1016/j.atmosenv.2007.12.070

Paviotti, M.; Vogiatzis, K. 2012. On the outdoor annoyance from scooter and motorbike noise in the urban environment, Science of the Total Environment 430: 223–230. https://doi.org/10.1016/j.scitotenv.2012.05.010

Phan, H. Y. T.; Yano, T.; Sato, T.; Nishimura, T. 2010. Characteristics of road traffic noise in Hanoi and Ho Chi Minh City, Vietnam, Applied Acoustics 71(5): 479–485. https://doi.org/10.1016/j.apacoust.2009.11.008

Podvezko, V.; Sivilevičius, H. 2013. The use of AHP and rank correlation methods for determining the significance of the interaction between the elements of a transport system having a strong influence on traffic safety, Transport 28(4): 389–403. https://doi.org/10.3846/16484142.2013.866980

Rey-Gozalo, G.; Gómez Escobar, V.; Morillas, J. M. B.; Montes González, D.; Moraga, P. A. 2019. Statistical attribution of errors in urban noise modeling, Applied Acoustics 153: 20–29. https://doi.org/10.1016/j.apacoust.2019.04.001

Stosiak, M. 2015. Ways of reducing the impact of mechanical vibrations on hydraulic valves, Archives of Civil and Mechanical Engineering 15(2): 392–400. https://doi.org/10.1016/j.acme.2014.06.003

Tong, Y.; Jiang, Y.; Zhou, Z.; Ma, D. 2014. The monitoring and prevention of traffic noise in urban road, Advanced Materials Research 933: 1008–1013. https://doi.org/10.4028/www.scientific.net/AMR.933.1008

Torija, A. J.; Ruiz, D. P.; De Coensel, B.; Botteldooren, D.; Berglund, B.; Ramos-Ridao, Á. 2011. Relationship between road and railway noise annoyance and overall indoor sound exposure, Transportation Research Part D: Transport and Environment 16(1): 15–22. https://doi.org/10.1016/j.trd.2010.07.012

Vogiatzis, K. 2011. Strategic environmental noise mapping & action plans in Athens ring road (Atiiki Odos) – Greece, WSEAS Transactions on Environment and Development 7(10): 315–324. Available from Internet: http://www.wseas.us/e-library/transactions/environment/2011/54-290.pdf

Vogiatzis, K.; Remy, N. 2014. Strategic noise mapping of Herakleion: the aircraft noise impact as a factor of the int. airport relocation, Noise Mapping 1(1): 15–31. https://doi.org/10.2478/noise-2014-0003

Wang, H.; Chen, H.; Cai, M. 2018. Evaluation of an urban traffic noise–exposed population based on points of interest and noise maps: the case of Guangzhou, Environmental Pollution 239: 741–750. https://doi.org/10.1016/j.envpol.2017.11.036

Wang, Y.; Wie, J.-S.; Zhang, S.-B.; Zhang, P.; Li, X.-T.; Liu, Y.-H. 2013. Study on the noise spectrum emitted by constant-velocity small passenger vehicles, Environmental Monitoring in China (5): 173–175. (in Chinese).

Yang, W.; Cai, M.; Luo, P. 2020. The calculation of road traffic noise spectrum based on the noise spectral characteristics of single vehicles, Applied Acoustics 160: 107128. https://doi.org/10.1016/j.apacoust.2019.107128

Zambon, G.; Roman, H. E.; Benocci, R. 2017. Vehicle speed recognition from noise spectral patterns, International Journal of Environmental Research 11(4): 449–459. https://doi.org/10.1007/s41742-017-0040-4