Scheduling for yard cranes based on two-stage hybrid dynamic programming
DOI: https://doi.org/10.3846/16484142.2016.1255993Abstract
Making operational plans for Yard Cranes (YCs) to enhance port efficiency has become vital issues for the container terminals. This paper discusses the load-scheduling problem of multiple YCs. The problem is to schedule two YCs at different container blocks, which serve the loading operations of one quay crane so as to minimize the total distance of visiting paths and the make-span at stack area. We consider the container handling time, the YC visiting time, and the waiting time of each YC when evaluating the make-span of the loading operation by YCs. Both the container bay visiting sequences and the number of containers picked up at each visit of the two YCs are determined simultaneously. A mathematical model, which considers interference between adjacent YCs, is provided by means of time-space network to formulate the problem and a two-stage hybrid algorithm composed of greedy algorithm and dynamic programming is developed to solve the proposed model. Numerical experiments were conducted to compare performances of the algorithm in this study with actual scheduling rules.
First published online 08 December 2016
Keywords:
container terminals, load-scheduling; greedy algorithm, dynamic programming, two-stage hybrid algorithmHow to Cite
Share
License
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.