Share:


Monitoring of current collectors on the railway line

    Krzysztof Karwowski Affiliation
    ; Mirosław Mizan Affiliation
    ; Dariusz Karkosiński Affiliation

Abstract

Proper cooperation the current collectors and the overhead line is a pre-requisite for reliable and safe operation of railway transport. Instances of maladjustment and, in some cases, damage to the current collectors, occur between periodic inspections of the rolling stock. In order to detect such anomalies quickly, the test stand was developed, with the aim of monitoring the technical state of the current collectors under operating conditions. The detection procedure is based on the monitoring and analysis of contact wire uplift caused by the pressure of the current collector, as the train passes through the measuring point located on the railway line and is designed with the aim of detecting collectors with incorrect values of a contact force.


First published online 29 February 2016

Keyword : catenary, pantograph, double pantographs, dynamic performance, simulation, monitoring system, railway

How to Cite
Karwowski, K., Mizan, M., & Karkosiński, D. (2018). Monitoring of current collectors on the railway line. Transport, 33(1), 177-185. https://doi.org/10.3846/16484142.2016.1144222
Published in Issue
Jan 26, 2018
Abstract Views
854
PDF Downloads
745
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ambrósio, J.; Pombo, J.; Pereira, M.; Antunes, P.; Mósca, A. 2012. A computational procedure for the dynamic analysis of the catenary–pantograph interaction in high-speed trains, Journal of Theoretical and Applied Mechanics 50(3): 681–699.

Bocciolone, M.; Bucca, G.; Collina, A.; Comolli, L. 2013. Pantograph–catenary monitoring by means of fibre Bragg grating sensors: Results from tests in an underground line, Mechanical Systems and Signal Processing 41(1–2): 226–238. http://dx.doi.org/10.1016/j.ymssp.2013.06.030

Bucca, G.; Collina, A.; Manigrasso, R.; Mapelli, F.; Tarsitano, D. 2011. Analysis of electrical interferences related to the current collection quality in pantograph–catenary interaction, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 225(5): 483–500. http://dx.doi.org/10.1177/0954409710396786

Benet, J.; Cuartero, N.; Cuartero, F.; Rojo, T.; Tendero, P.; Arias, E. 2013. An advanced 3D-model for the study and simulation of the pantograph catenary system, Transportation Research Part C: Emerging Technologies 36: 138–156. http://dx.doi.org/10.1016/j.trc.2013.08.004

Jarzebowicz, L.; Judek, S. 2014. 3D machine vision system for inspection of contact strips in railway vehicle current collectors, in 2014 International Conference on Applied Electronics (AE), 9–10 September 2014, Pilsen, Czech Republic, 139–144. http://dx.doi.org/10.1109/AE.2014.7011686

Facchinetti, A.; Bruni, S. 2012. Hardware-in-the-loop hybrid simulation of pantograph–catenary interaction, Journal of Sound and Vibration 331(12): 2783–2797. http://dx.doi.org/10.1016/j.jsv.2012.01.033

Kiessling, F.; Puschmann, R.; Schmieder, A.; Schneider, E. 2009. Contact Lines for Electric Railways: Planning, Design, Implementation, Maintenance. Publicis Publishing. 994 p.

Luna Vázquez, C. A.; Mazo Quintas, M.; Marrón Romera, M. 2010. Non-contact sensor for monitoring catenary–pantograph interaction, in 2010 IEEE International Symposium on Industrial Electronics (ISIE), 4–7 July 2010, Bari, Italy, 482–487. http://dx.doi.org/10.1109/isie.2010.5637852

Mizan, M.; Karwowski, K.; Karkosiński, D. 2013. Monitoring odbieraków prądu w warunkach eksploatacyjnych na linii kolejowej, Przegląd Elektrotechniczny 89(12): 154–160. (in Polish).

Pombo, J.; Ambrósio, J. 2012. Influence of pantograph suspension characteristics on the contact quality with the catenary for high speed trains, Computers & Structures 110–111: 32–42. http://dx.doi.org/10.1016/j.compstruc.2012.06.005

Pombo, J.; Ambrósio, J. 2013. Environmental and track perturbations on multiple pantograph interaction with catenaries in high-speed trains, Computers & Structures 124: 88–101. http://dx.doi.org/10.1016/j.compstruc.2013.01.015

Pombo, J.; Ambrósio, J.; Pereira, M.; Rauter, F.; Collina, A.; Facchinetti, A. 2009. Influence of the aerodynamic forces on the pantograph–catenary system for high-speed trains, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility 47(11): 1327–1347. http://dx.doi.org/10.1080/00423110802613402

Rauter, F. G.; Pombo, J.; Ambrósio, J.; Chalansonnet, J.; Bobillot, A.; Pereira, M. S. 2007. Contact model for the pantograph-catenary interaction, Journal of System Design and Dynamics 1(3): 447–457. http://dx.doi.org/10.1299/jsdd.1.447

Schorno, R.; Schmidt, C.; Nietlispach, U. 2011. Zugkontrol-leinrichtungen in der Schweiz, Elektrische Bahnen 109(9): 448–458. (in German).

Szeląg, A.; Maciołek, T. 2013. A 3 kV DC electric traction system modernisation for increased speed and trains power demand – problems of analysis and synthesis, Przegląd Elektrotechniczny 89(3a): 21–28.

Tanarro, F.; Fuerte, V. 2011. OHMS-real-time analysis of the pantograph–catenary interaction to reduce maintenance costs, in 5th IET Conference on Railway Condition Monitoring and Non-Destructive Testing (RCM 2011), 29–30 November 2011, Derby, UK, 1–6. http://dx.doi.org/10.1049/cp.2011.0600

Zhou, L.; Shen, Z. 2011. Progress in high-speed train technology around the world, Journal of Modern Transportation 19(1): 1–6. http://dx.doi.org/10.1007/BF03325733

Zhou, N.; Zhang, W. 2011. Investigation on dynamic performance and parameter optimization design of pantograph and catenary system, Finite Elements in Analysis and Design 47(3): 288–295. http://dx.doi.org/10.1016/j.finel.2010.10.008