Share:


Model of emission of exhaust compounds of jet aircraft in cruise phase enabling trajectory optimization

    Małgorzata Pawlak Affiliation
    ; Andrzej Majka Affiliation
    ; Michal Kuzniar Affiliation
    ; Jowita Pawluczy Affiliation

Abstract

Nowadays, air transport is the most modern and the most dynamically developing branch of transport. This intensive development of air transport causes the continuous increase in emissions of pollutants, mainly greenhouse gases, leading to the deepening of the greenhouse effect, which in turn leads to irreversible global climate change. In order to optimize air communication and make it even more economical and environmentally friendly, such activities as e.g. SESAR project are undertaken. One of the parts of this project is the research on minimizing fuel consumption and emissions of pollutants in jet engine exhausts. The paper presents a developed model of emission and main pollutants (NOx, CO, HC and CO2) in the exhausts of jet engines of a passenger aircraft during a cruise phase. Applying simple optimization tools, such as e.g. the Dijkstra’s algorithm, this model was verified by the optimization of a trajectory of a jet aircraft in a cruise phase on an exemplary route in terms of minimizing emission of selected harmful compounds in jet engines exhausts. To meet the aim of the research, it was necessary to develop a computer program that determines a two-dimensional grid graph, assigns its appropriate weights to its edges and passing along these edges, determines the optimal trajectory of a given flight between two indicated start and end vertices. The developed research methodology is universal and can be applied for any jet passenger aircraft.

Keyword : aircraft, jet engine, emission, fuel consumption, flight path, trajectory optimization, cruise phase

How to Cite
Pawlak, M., Majka, A., Kuzniar, M., & Pawluczy, J. (2020). Model of emission of exhaust compounds of jet aircraft in cruise phase enabling trajectory optimization. Transport, 35(1), 87-97. https://doi.org/10.3846/transport.2020.12243
Published in Issue
Mar 30, 2020
Abstract Views
912
PDF Downloads
608
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Antoine, N. E.; Kroo, I. M. 2004. Aircraft optimization for minimal environmental impact, Journal of Aircraft 41(4): 790–797. https://doi.org/10.2514/1.71

Archer, L. J. 2001. Aircraft Emissions and the Environment. Oxford Institute for Energy Studies. 163 p.

Bower, G. C.; Kroo, I. M. 2008. Multi-objective aircraft optimization for minimum cost and emissions over specific route networks, in 26th Congress of International Council of the Aeronautical Sciences Including the 8th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, 14–19 September 2008, Anchorage, Alaska, US, 1–23. https://doi.org/10.2514/6.2008-8905

Brusow, W.; Klepacki, Z.; Majka, A. 2007. Airports and Facilities Data Base. European Personal Air Transportation System (EPATS) Technical Report. Project No ASA6-CT-2006-044549.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs, Numerische Mathematik 1: 269–271. https://doi.org/10.1007/BF01386390

EASA. 2013. EASA Type-Certificate Data Sheet. Rolls-Royce Deutschland Ltd & Co KG Tay Series Engines. Number: E.063 Issue: 04. European Aviation Safety Agency (EASA). 13 p. Available from Internet: https://www.easa.europa.eu/sites/default/files/dfu/EASA-TCDS-E.063_Rolls--Royce_Deutschland_Tay_Series_engines-04-18062013.pdf

EASA. 2018. ICAO Aircraft Engine Emissions Databank. European Aviation Safety Agency (EASA). Available from Internet: https://www.easa.europa.eu/easa-and-you/environment/icao-aircraft-engine-emissions-databank

Elbir, T. 2008. Estimation of engine emissions from commercial aircraft at a midsized Turkish airport, Journal of Environmental Engineering 134(3): 210–215. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:3(210)

EUROCONTROL. 2018. European Organisation for the Safety of Air Navigation. Available from Internet: https://www.eurocontrol.int

EUROCONTROL. 2016a. EUROCONTROL Seven-Year Forecast: Flight Movements and Service Units 2016–2022. Edition Number: 16/09/26-98. European Organisation for the Safety of Air Navigation (EUROCONTROL). 92 p. Available from Internet: https://www.eurocontrol.int/sites/default/files/content/documents/official-documents/forecasts/seven-year-flights-service-units-forecast-2016-2022-september-2016.pdf

EUROCONTROL. 2016b. Free Route Airspace developments: for a Route-Free European Network. European Organisation for the Safety of Air Navigation (EUROCONTROL). 32 p. Available from Internet: https://www.eurocontrol.int/sites/default/files/2019-06/free-route-airspace-brochure-20161216.pdf

Flightradar24. 2018. Flightradar24 Flight Tracker. Available from Internet: https://www.flightradar24.com

Garrison, M.; DuBois, D.; Baughcum, S. 2003. Aircraft emission inventories and scenarios, in Ultra-Efficient Engine Technology (UEET) Forum, 27–29 October 2003, Westlake, OH, US.

Głowacki, P.; Szczeciński, S. 2013. Transport lotniczy: zagrożenia ekologiczne oraz sposoby ich ograniczania. Wydawnictwa Naukowe Instytutu Lotnictwa, Warszawa. 121 s. (in Polish).

Hamy, A.; Murrieta-Mendoza, A.; Botez, R. 2016. Flight trajectory optimization to reduce fuel burn and polluting emissions using a performance database and ant colony optimization algorithm, in AEGATS’2016: Advanced Aircraft Efficiency in a Global Air Transport System, 12–14 April 2016, Paris, France, 1–9.

ICAO. 2008. Environmental Protection. Annex 16: to the Convention on International Civil Aviation. Volume II: Aircraft Engine Emissions. International Civil Aviation Organization (ICAO). 97 p.

IPCC. 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 3: Reference Manual. Intergovernmental Panel on Climate Change (IPCC). Available from Internet: https://www.ipcc-nggip.iges.or.jp/public/gl/invs6.html

Jeż, M. 2009. Transport lotniczy a zrównoważony rozwój. Biblioteka Naukowa Instytutu Lotnictwa, Wydawnictwa Naukowe Instytutu Lotnictwa, Warszawa. 176 s. (in Polish).

Khardi, S.; Kurniawan, J. 2012. Combined effect of Aircraft Noise and Pollutant Emissions in the Intermediate Atmospheric Layers. International Joint Research Project 2010–2012. University of Indonesia, Indonesia / INRETS, France. INRETS-LTE Report No 1010. 78 p.

Kim, B. Y.; Fleming, G. G.; Lee, J. J.; Waitz, I. A.; Clarke, J.-P.; Balasubramanian, S.; Malwitz, A.; Klima, K.; Locke, M.; Holsclaw, C. A.; Maurice, L. Q.; Gupta, M. L. 2007. System for assessing aviation’s global emissions (SAGE), part 1: model description and inventory results, Transportation Research Part D: Transport and Environment 12(5): 325–346. https://doi.org/10.1016/j.trd.2007.03.007

Kopecki, G.; Pęczkowski, M.; Rogalski, T. 2017. Rzykładowy algorytm automatycznego wyznaczania trasy przelotu w przestrzeni lotów swobodnych, Autobusy (6): 1219–1224. (in Polish).

Masiol, M.; Harrison, R. M. 2014. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: a review, Atmospheric Environment 95: 409–455. https://doi.org/10.1016/j.atmosenv.2014.05.070

PANSA. 2018. Polish Air Navigation Services Agency (PANSA). Available from Internet: https://www.pansa.pl

Pawlak, M.; Kuźniar, M. 2018. Analysis of the wind dependent duration of the cruise phase on jet engine exhaust emissions, Journal of KONES Powertrain and Transport 25(3): 371–376.

Pawlak, M.; Majka, A.; Kuźniar, M.; Pawluczy, J. 2018a. Analysis of wind impact on emission of selected exhaust compounds in jet engines of a business jet aircraft in cruise phase, Combustion Engines 173(2): 55–60. https://doi.org/10.19206/CE-2018-209

Pawlak, M.; Majka, A.; Kuźniar, M.; Pawluczy, J. 2018b. Emission of selected exhaust compounds in jet engines of a jet aircraft in cruise phase, Combustion Engines 173(2): 67–72. https://doi.org/10.19206/CE-2018-211

Penner, J. E.; Lister, D. H.; Griggs, D. J.; Dokken, D. J.; McFarland, M. (Eds.). 1999. Aviation and the Global Atmosphere. Intergovernmental Panel on Climate Change. 373 p. Available from Internet: https://www.ipcc.ch/report/aviation-and-the-global-atmosphere-2

Pratap, R. 2016. Getting Started with MATLAB: a Quick Introduction for Scientists and Engineers. Oxford University Press. 320 p.

Ramanathan, V.; Feng, Y. 2009. Air pollution, greenhouse gases and climate change: Global and regional perspectives, Atmospheric Environment 43(1): 37–50. https://doi.org/10.1016/j.atmosenv.2008.09.063

Schaefer, M.; Bartosch, S. 2013. Overview on Fuel Flow Correlation Methods for the Calculation of NOx, CO and HC Emissions and Their Implementation into Aircraft Performance Software. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Antriebstechnik, Köln. 15 p.

Schäfer, A. W.; Waitz, I. A. 2014. Air transportation and the environment, Transport Policy 34: 1–4. https://doi.org/10.1016/j.tranpol.2014.02.012

Serafino, G. 2014. Multi-objective trajectory optimization to reduce aircraft emissions in case of unforeseen weather events, in 29th Congress of the International Council of the Aeronautical Sciences, 7–12 September 2014, St. Petersburg, Russia, 1–9. Available from Internet: https://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0338_paper.pdf

SESAR. 2018. Single European Sky ATM Research (SESAR). Available from Internet: https://www.sesarju.eu

Singh, V. 2017. Fuel consumption minimization of transport aircraft using real-coded genetic algorithm, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232(10): 1925–1943. https://doi.org/10.1177/0954410017705899

Singh, V.; Sharma, S. K. 2014. Evolving base for the fuel consumption optimization in Indian air transport: application of structural equation modelling, European Transport Research Review 6(3): 315–332. https://doi.org/10.1007/s12544-014-0134-4

WHO. 2006. Air Quality Guideline: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. World Health Organization (WHO). 496 p. Available from Internet: http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf

Wilson, D. G.; Korakianitis, T. 2014. The Design of High-Efficiency Turbomachinery and Gas Turbines. MIT Press. 624 p. https://doi.org/10.7551/mitpress/9940.001.0001

Windy. 2018. Meteorological Maps. Available from Internet: https://www.windy.com