Share:


Network topology of renewable energy companies: minimal spanning tree and sub-dominant ultrametric for the American stock

    Mansooreh Kazemilari Affiliation
    ; Ali Mohamadi Affiliation
    ; Abbas Mardani Affiliation
    ; Justas Streimikis Affiliation

Abstract

Renewable energy has become a significant market player after the turn of the millennium. Wind, solar, smart grid and further renewable energy stocks have experienced both serious up and down trends since that time. In this paper, computed the Minimal Spanning Tree (MST) and Sub-Dominant Ultrametric (SDU) for topological properties of what has been driving the price of renewable energy stock markets and sectors. In this regard, the main object is to define the similarity among sectors in financial market, which is statistically a multivariate time series. The principal mathematical tool to do macro analysis is multivariate vector correlation where multi-dimensional data is considered as a complex system. Furthermore, the base approach for filtering the significant information in a financial system is similarity network analysis. In this paper, the behavior of economic sectors of renewable energy played during 30th July 2015 – 1th January 2018 in America. Results of this study found that, solar sector in renewable energy is confirmed as the dominant sector in America during this period. In addition, results demonstrated that, the leader sector is Solar and the central hubs are Canadian Solar Inc. (CSIQ)from Solar and then Pattern Energy Group Inc. (PEGI)from Solar-Wind sectors.

Keyword : sector analysis, renewable energy, stock market, Similarity network analysis

How to Cite
Kazemilari, M., Mohamadi, A., Mardani, A., & Streimikis, J. (2019). Network topology of renewable energy companies: minimal spanning tree and sub-dominant ultrametric for the American stock. Technological and Economic Development of Economy, 25(2), 168-187. https://doi.org/10.3846/tede.2019.7686
Published in Issue
Feb 7, 2019
Abstract Views
1473
PDF Downloads
869
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abbasi, A., & Altmann, J. (2011). On the correlation between research performance and social network analysis measures applied to research collaboration networks. In 44th Hawaii International Conference on System Sciences (HICSS), 4–7 January 2011, Kauai, HI, USA (pp. 1-10). IEEE. https://doi.org/10.1109/HICSS.2011.325

Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47. https://doi.org/10.1103/RevModPhys.74.47

Batagelj, V., & Mrvar, A. (2003). Density based approaches to network analysis – Analysis of Reuters terror news network. 20 p.

Batagelj, V., & Mrvar, A. (2004). Pajekanalysis and visualization of large networks. Springer.

Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55-71. https://doi.org/10.1016/j.socnet.2004.11.008

Borgatti, S. P. (2006). Identifying sets of key players in a social network. Computational & Mathematical Organization Theory, 12(1), 21-34. https://doi.org/10.1007/s10588-006-7084-x

Borgatti, S. P., & Everett, M. G. (2006). A Graph-theoretic perspective on centrality. Social Networks, 28(4), 466-484. https://doi.org/10.1016/j.socnet.2005.11.005

Borgatti, S. P., Carley, K. M., & Krackhardt, D. (2006). On the robustness of centrality measures under conditions of imperfect data. Social Networks, 28(2), 124-136. https://doi.org/10.1016/j.socnet.2005.05.001

Brida, J. G., & Risso, W. A. (2010). Hierarchical structure of the German stock market. Expert Systems with Applications, 37(5), 3846-3852. https://doi.org/10.1016/j.eswa.2009.11.034

Chang, M.-Ch., & Shieh, H.-Sh. (2017). The relations between energy efficiency and GDP in the Baltic Sea Region and Non-Baltic Sea Region. Transformations in Business & Economics, 16(2(41), 235-247.

Coxhead, P. (1974). Measuring the relationship between two sets of variables. British Journal of Mathematical and Statistical Psychology, 27(2), 205-212. https://doi.org/10.1111/j.2044-8317.1974.tb00541.x

Cramer, E. M., & Nicewander, W. A. (1979). Some symmetric, invariant measures of multivariate association. Psychometrika, 44(1), 43-54. https://doi.org/10.1007/BF02293783

De Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek (Vol. 27). Cambridge University Press. https://doi.org/10.1017/CBO9780511996368

Djauhari, M. A. (2012). A robust filter in stock networks analysis. Physica A: Statistical Mechanics and its Applications, 391(20), 5049-5057. https://doi.org/10.1016/j.physa.2012.05.060

Dutta, A., Bouri, E., & Noor, M. H. (2018). Return and volatility linkages between CO2 emission and clean energy stock prices. Energy, 164, 803-810. https://doi.org/10.1016/j.energy.2018.09.055

Eom, C., Oh, G., & Kim, S. (2008). Statistical investigation on connected structure of stock networks in a financial time series. Korean Physical Society, 53, 3837-3841. https://doi.org/10.3938/jkps.53.3837

Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics, 29(4), 751-760. https://doi.org/10.2307/2529140

Espino, J. M., & Hoyos, J. R. C. (2010). Stability of centrality measures in social network analyses to identify long-lasting leaders from an indigenous boarding school of northern Mexico. Estudios Sobre las Culturas Contempor´aneas, 32, 155-171.

Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543

Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. https://doi.org/10.1016/0378-8733(78)90021-7

Garas, A., & Argyrakis, P. (2007). Correlation study of the Athens stock exchange. Physica A: Statistical Mechanics and its Applications, 380, 399-410. https://doi.org/10.1016/j.physa.2007.02.097

Gormus, N. A., Soytas, U., & Diltz, J. D. (2015). Oil prices, fossil-fuel stocks and alternative energy stocks. International Journal of Economics and Finance, 7(7), 43-55. https://doi.org/10.5539/ijef.v7n7p43

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3-4), 321-377. https://doi.org/10.1093/biomet/28.3-4.321

Investopedia. (2018). Retrieved from https://www.investopedia.com

Jang, W., Lee, J., & Chang, W. (2011). Currency crises and the evolution of foreign exchange market: Evidence from minimum spanning tree. Physica A: Statistical Mechanics and its Applications, 390(4), 707-718. https://doi.org/10.1016/j.physa.2010.10.028

Jovovic, R., Simanaviciene, Z., & Dirma, V. (2017). Assessment of heat production savings resulting from replacement of gas with biofuels. Transformations in Business & Economics, 16(1), 34-51.

Kantar, E., Keskin, M., & Deviren, B. (2012). Analysis of the effects of the global financial crisis on the Turkish economy, using hierarchical methods. Physica A: Statistical Mechanics and its Applications, 391(7), 2342-2352. https://doi.org/10.1016/j.physa.2011.12.014

Kazemilari, M., & Djauhari, M. A. (2015). Correlation network analysis for multi-dimensional data in stocks market. Physica A: Statistical Mechanics and its Applications, 429, 62-75. https://doi.org/10.1016/j.physa.2015.02.052

Kazemilari, M., Mardani, A., Streimikiene, D., & Zavadskas, E. K. (2017). An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach. Renewable Energy, 102(Part A), 107-117. https://doi.org/10.1016/j.renene.2016.10.029

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1), 48-50. https://doi.org/10.1090/S0002-9939-1956-0078686-7

Kshirsagar, A. (1969). Correlation between two vector variables. Journal of the Royal Statistical Society. Series B (Methodological), 31(3), 477-485. https://doi.org/10.1111/j.2517-6161.1969.tb00807.x

Kwapień, J, & Drożdż, S. (2012). Physical approach to complex systems. Physics Reports, 515(3), 115-226. https://doi.org/10.1016/j.physrep.2012.01.007

Lyu, X., & Shi, A. (2018). Research on the renewable energy industry financing efficiency assessment and mode selection. Sustainability, 10(1), 222. https://doi.org/10.3390/su10010222

Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193-197. https://doi.org/10.1007/s100510050929

Mantegna, R. N., & Stanley, H. E. (1999). Introduction to econophysics: correlations and complexity in finance. Cambridge University Press. https://doi.org/10.1017/CBO9780511755767

Mantegna, R., & Stanley, H. E. (2000). An introduction to econophysics. Cambridge, MA: Cambridge University Press.

Masuyama, M. (1941). Correlation coefficient between two sets of complex vectors. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 23, 918-924. https://doi.org/10.11429/ppmsj1919.23.0_918

Micciche, S., Bonanno, G., Lillo, F., & Mantegna, R. N. (2003). Degree stability of a minimum spanning tree of price return and volatility. Physica A: Statistical Mechanics and its Applications, 324(1-2), 66-73. https://doi.org/10.1016/S0378-4371(03)00002-5

Mundada, A. S., Prehoda, E. W, Pearce, J. M. (2017). U. S. market for solar photovoltaic plug-and-play systems. Renewable Energy, 103, 255-264. https://doi.org/10.1016/j.renene.2016.11.034

Newman, M. E. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39-54. https://doi.org/10.1016/j.socnet.2004.11.009

New York Stock Exchange [NYSE]. (n.d.). Retrieved from www.nyse.com

Onnela, J.-P., Chakraborti, A., Kaski, K., Kertesz, J., & Kanto, A. (2003). Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E, 68(5), 056110. https://doi.org/10.1103/PhysRevE.68.056110

Park, K., & Yilmaz, A. (2010, April 26-30). A social network analysis approach to analyze road networks. ASPRS Annual Conference (pp. 1-6). San Diego, California, CA.

Renewable Energy World. (2018). Renewable Energy News & Information. Retrieved from https://www.renewableenergyworld.com

Robert, P., & Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: the RV-coefficient. Applied Statistics, 25(3), 257-265. https://doi.org/10.2307/2347233

Rosenow, B., Gopikrishnan, P., Plerou, V., & Stanley, H. E. (2003). Dynamics of cross-correlations in the stock market. Physica A: Statistical Mechanics and its Applications, 324(1), 241-246. https://doi.org/10.1016/S0378-4371(03)00005-0

Ross, S. M. (2011). An elementary introduction to mathematical finance. Cambridge University Press. https://doi.org/10.1017/CBO9780511921483

Shaffer, J. P., & Gillo, M. W. (1974). A multivariate extension of the correlation ratio. Educational and Psychological Measurement, 34(3), 521-524. https://doi.org/10.1177/001316447403400305

Sieczka, P., & Hołyst, J. A. (2009). Correlations in commodity markets. Physica A: Statistical Mechanics and its Applications, 388(8), 1621-1630. https://doi.org/10.1016/j.physa.2009.01.004

Stephens, M. (1979). Vector correlation. Biometrika, 66(1), 41-48. https://doi.org/10.1093/biomet/66.1.41

Stürmer, B., Novakovits, Ph., Luidolt, A., & Zweiler, R. (2019). Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region. Renewable Energy, 130, 920-929. https://doi.org/10.1016/j.renene.2018.07.017

Tabak, B. M., Serra, T. R., & Cajueiro, D. O. (2010). Topological properties of stock market networks: The case of Brazil. Physica A: Statistical Mechanics and its Applications, 389(16), 3240-3249. https://doi.org/10.1016/j.physa.2010.04.002

Tola, V., Lillo, F., Gallegati, M., & Mantegna, R. N. (2008). Cluster analysis for portfolio optimization. Journal of Economic Dynamics and Control, 32(1), 235-258. https://doi.org/10.1016/j.jedc.2007.01.034

Tumminello, M., Aste, T., Di Matteo, T., & Mantegna, R. N. (2005). A tool for filtering information in complex systems. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10421-10426. https://doi.org/10.1073/pnas.0500298102

Ulusoy, T., Keskin, M., Shirvani, A., Deviren, B., Kantar, E., & D¨onmez, C. C. (2012). Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach. Physica A: Statistical Mechanics and its Applications, 391(21), 5121-5131. https://doi.org/10.1016/j.physa.2012.01.026

Wang, G.-J., Xie, C., Han, F., & Sun, B. (2012). Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree. Physica A: Statistical Mechanics and its Applications, 391(16), 4136-4146. https://doi.org/10.1016/j.physa.2012.03.036

Xu, Y., Ma, J., Sun, Y., Hao, J., Sun, Y., & Zhao, Y. (2009). Using social network analysis as a strategy for e-commerce recommendation. PACIS 2009 Proceedings, 106. Retrieved from https://aisel.aisnet.org/pacis2009/106

Yahoo Finance. (n.d.). Retrieved from http://finance.yahoo.com

Zeng, S., Jiang, C., Ma, C., & Su, B. (2018). Investment efficiency of the new energy industry in China. Energy Economics, 70, 536-544. https://doi.org/10.1016/j.eneco.2017.12.023

Zhang, G., & Du, Z. (2017). Co-movements among the stock prices of new energy, high-technology and fossil fuel companies in China. Energy, 135, 249-256. https://doi.org/10.1016/j.energy.2017.06.103

Zhang, H., Zhang, X., Sun, Y., Liu, J., Li, W., & Tian, J. (2011b). A weighted-RV method to detect fine-scale functional connectivity during resting state. NeuroImage, 54(4), 2885-2898. https://doi.org/10.1016/j.neuroimage.2010.10.051

Zhang, Y., Lee, G. H. T., Wong, J. C., Kok, J. L., Prusty, M., & Cheong, S. A. (2011a). Will the US economy recover in 2010? A minimal spanning tree study. Physica A: Statistical Mechanics and its Applications, 390(11), 2020-2050. https://doi.org/10.1016/j.physa.2011.01.020