Multiple Normalization Rating Analysis (MUNRA) and its application to digital supplier selection in the textile industry

    Alptekin Ulutaş Info
    Fatih Ecer Info
    Zenonas Turskis Info
DOI: https://doi.org/10.3846/tede.2025.25346

Abstract

The rapid development of digital technologies – such as IoT, AI, blockchain, and digital twins – has transformed supply chains into interconnected ecosystems, making digital supplier selection both critical and complex. For the first time, this study proposes a novel multi-criteria decision-making (MCDM) method, Multiple Normalization Rating Analysis (MUNRA), for ranking alternatives. It integrates linear, vector, and non-linear normalization to improve robustness, reduce rank reversal, and enhance decision accuracy. A case study of digital supplier selection in the textile industry is considered for a real-life application of the method. Results highlight technology integration, flexibility, and technological capability as the most influential criteria for selecting digital suppliers. Moreover, the final ranking of the six digital suppliers is as follows: DS5, DS4, DS2, DS6, DS1, and DS3. Validation through comparative MCDM methods, Spearman correlation, and sensitivity analyses confirms the credibility of the method. It is also shown that it is free from the rank reversal phenomenon. The research presents a computationally efficient and rigorous method for evaluating digital suppliers, offering strategic insights for digital supply chain management. The application of MUNRA to a larger decision-making problem further illustrates its scalability and cross-domain applicability.

Keywords:

digital supply chain, digital supplier selection, supply chain management, supplier selection, MUNRA, MCDM

How to Cite

Ulutaş, A., Ecer, F., & Turskis, Z. (2025). Multiple Normalization Rating Analysis (MUNRA) and its application to digital supplier selection in the textile industry. Technological and Economic Development of Economy, 31(6), 2074–2104. https://doi.org/10.3846/tede.2025.25346

Share

Published in Issue
December 8, 2025
Abstract Views
0

References

Alkan, N., & Kahraman, C. (2023). Prioritization of supply chain digital transformation strategies using multi-expert fermatean fuzzy analytic hierarchy process. Informatica, 34(1), 1–33. https://doi.org/10.15388/22-INFOR493

Balo, F., Ulutaş, A., Stević, Ž., Boydak, H., & Zavadskas, E. K. (2025). Hybrid Revit and a new MCDM approach of energy effective nursing-home designed by natural stone and green insulation materials. Journal of Civil Engineering and Management, 31(4), 317–336. https://doi.org/10.3846/jcem.2025.23486

Benatiya Andaloussi, M. (2024). A bibliometric literature review of digital supply chain: Trends, insights, and future directions. SAGE Open, 14(2). https://doi.org/10.1177/21582440241240340

Bošković, S., Švadlenka, L., Jovčić, S., Simic, V., Dobrodolac, M., & Elomiya, A. (2024). Sustainable propulsion technology selection in penultimate mile delivery using the FullEX-AROMAN method. Socio-Economic Planning Sciences, 95, Article 102013. https://doi.org/10.1016/j.seps.2024.102013

Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2), 445–469.

Brauers, W. K. M., & Zavadskas, E. K. (2010). Project management by MULTIMOORA as an instrument for transition economies. Technological and Economic Development of Economy, 16(1), 5–24. https://doi.org/10.3846/tede.2010.01

Brintrup, A., Kosasih, E., Schaffer, P., Zheng, G., Demirel, G., & MacCarthy, B. L. (2024). Digital supply chain surveillance using artificial intelligence: Definitions, opportunities and risks. International Journal of Production Research, 62(13), 4674–4695. https://doi.org/10.1080/00207543.2023.2270719

Büyüközkan, G., & Göçer, F. (2018a). An extension of ARAS methodology under interval valued intuitionistic fuzzy environment for digital supply chain. Applied Soft Computing, 69, 634–654. https://doi.org/10.1016/j.asoc.2018.04.040

Büyüközkan, G., & Göçer, F. (2018b). Digital Supply Chain: Literature review and a proposed framework for future research. Computers in Industry, 97, 157–177. https://doi.org/10.1016/j.compind.2018.02.010

Büyüközkan, G., & Göçer, F. (2021). A novel approach integrating AHP and COPRAS under Pythagorean fuzzy sets for digital supply chain partner selection. IEEE Transactions on Engineering Management, 68(5), 1486–1503. https://doi.org/10.1109/TEM.2019.2907673

Chakraborty, S., & Zavadskas, E. K. (2014). Applications of WASPAS method in manufacturing decision making. Informatica, 25(1), 1–20. https://doi.org/10.15388/Informatica.2014.01

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8

Chen, X., Zhou, B., Štilić, A., Stević, Ž., & Puška, A. (2023). A fuzzy-rough MCDM approach for selecting green suppliers in the furniture manufacturing industry: A case study of eco-friendly material production. Sustainability, 15(13), Article 10745. https://doi.org/10.3390/su151310745

Ecer, F. (2022). Multi-criteria decision making for green supplier selection using interval type-2 fuzzy AHP: A case study of a home appliance manufacturer. Operational Research, 22, 199–233. https://doi.org/10.1007/s12351-020-00552-y

Ecer, F. (2024). A state-of-the-art review of the BWM method and future research agenda. Technological and Economic Development of Economy, 30(4), 1165–1204. https://doi.org/10.3846/tede.2024.20761

Ecer, F., & Pamucar, D. (2020). Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. Journal of Cleaner Production, 266, Article 121981. https://doi.org/10.1016/j.jclepro.2020.121981

Ecer, F., & Torkayesh, A. E. (2022). A stratified fuzzy decision-making approach for sustainable circular supplier selection. IEEE Transactions on Engineering Management, 71, 1130–1144. https://doi.org/10.1109/TEM.2022.3151491

Ecer, F., Haseli, G., Krishankumar, R., & Hajiaghaei-Keshteli, M. (2024). Evaluation of sustainable cold chain suppliers using a combined multi-criteria group decision-making framework under fuzzy ZE-numbers. Expert Systems with Applications, 245, Article 123063. https://doi.org/10.1016/j.eswa.2023.123063

Ecer, F., Tanrıverdi, G., Yaşar, M., & Görçün, Ö. F. (2025). Sustainable aviation fuel supplier evaluation for airlines through LOPCOW and MARCOS approaches with interval-valued fuzzy neutrosophic information. Journal of Air Transport Management, 123, Article 102705. https://doi.org/10.1016/j.jairtraman.2024.102705

Elsevier. (n.d.). Scopus overview and content statistics. https://www.elsevier.com/products/scopus

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A: Statistics in Society, 120(3), 253–281. https://doi.org/10.2307/2343100

Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Battelle Geneva Research Center.

Gabus, A., & Fontela, E. (1973). Perceptions of the world problematique: Communication procedure, communicating with those bearing collective responsibility (DEMATEL Report No. 1). Battelle Geneva Research Centre.

Gammelgaard, B., & Nowicka, K. (2023). Next generation supply chain management: The impact of cloud computing. Journal of Enterprise Information Management, 37(4), 1140–1160. https://doi.org/10.1108/JEIM-09-2022-0317

Gligorić, Z., Görçün, Ö. F., Gligorić, M., Pamucar, D., Simic, V., & Küçükönder, H. (2024). Evaluating the deep learning software tools for large-scale enterprises using a novel TODIFFA-MCDM framework. Journal of King Saud University-Computer and Information Sciences, 36(5), Article 102079. https://doi.org/10.1016/j.jksuci.2024.102079

Han, Y., & Fang, X. (2024). Systematic review of adopting blockchain in supply chain management: Bibliometric analysis and theme discussion. International Journal of Production Research, 62(3), 991–1016. https://doi.org/10.1080/00207543.2023.2236241

Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications: A state-of-the-art survey. Springer. https://doi.org/10.1007/978-3-642-48318-9

Iftikhar, A., Ali, I., Arslan, A., & Tarba, S. (2024). Digital innovation, data analytics, and supply chain resiliency: A bibliometric-based systematic literature review. Annals of Operations Research, 333, 825–848. https://doi.org/10.1007/s10479-022-04765-6

Ju-Long, D. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288–294. https://doi.org/10.1016/S0167-6911(82)80025-X

Kara, K., Yalçın, G. C., Simic, V., Baysal, Z., & Pamucar, D. (2024). The alternative ranking using two-step logarithmic normalization method for benchmarking the supply chain performance of countries. Socio-economic Planning Sciences, 92, Article 101822. https://doi.org/10.1016/j.seps.2024.101822

Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12

Keshavarz Ghorabaee, M., Zavadskas, E. K., Turskis, Z., & Antuchevičienė, J. (2016). A new Combinative Distance-based Assessment (CODAS) method for multi-criteria decision-making. Economic Computation & Economic Cybernetics Studies & Research, 50(3), 25–44.

Khan, S. A., Kusi-Sarpong, S., Gupta, H., Arhin, F. K., Lawal, J. N., & Hassan, S. M. (2021). Critical factors of digital supply chains for organizational performance improvement. IEEE Transactions on Engineering Management, 71, 13727–13741. https://doi.org/10.1109/TEM.2021.3052239

Kim, J. W., Rhee, J. H., & Park, C. H. (2024). How does digital transformation improve supply chain performance: A manufacturer’s perspective. Sustainability, 16(7), Article 3046. https://doi.org/10.3390/su16073046

Kumar, D., Agrawal, S., Singh, R. K., & Singh, R. K. (2024). IoT-enabled coordination for recommerce circular supply chain in the Industry 4.0 era. Internet of Things, 26, Article 101140. https://doi.org/10.1016/j.iot.2024.101140

Latan, H., de Sousa Jabbour, A. B. L., Sarkis, J., Jabbour, C. J. C., & Ali, M. (2024). The nexus of supply chain performance and blockchain technology in the digitalization era: Insights from a fast-growing economy. Journal of Business Research, 172, Article 114398. https://doi.org/10.1016/j.jbusres.2023.114398

Lee, K. L., Teong, C. X., Alzoubi, H. M., Alshurideh, M. T., Khatib, M. E., & Al-Gharaibeh, S. M. (2024). Digital supply chain transformation: The role of smart technologies on operational performance in manufacturing industry. International Journal of Engineering Business Management, 2024, Article 16. https://doi.org/10.1177/18479790241234986

Li, P., Li, T., Xu, H., Chen, S.-C., Chen, C.-C., & Tseng, M.-L. (2025). Promoting or inhibiting? Digital supply chain impacts on firm performance in Industry 4.0: Implication to circular supply chain strategy. International Journal of Logistics Research and Applications, 28(12), 1503–1521. https://doi.org/10.1080/13675567.2024.2355951

Liao, H., Wen, Z., & Liu, L. (2019). Integrating BWM and ARAS under hesitant linguistic environment for digital supply chain finance supplier section. Technological and Economic Development of Economy, 25(6), 1188–1212. https://doi.org/10.3846/tede.2019.10716

Lim, A. F., Ooi, K. B., Tan, G. W. H., Cham, T. H., Alryalat, M. A., & Dwivedi, Y. K. (2024a). Adapt or die: A competitive digital supply chain quality management strategy. Journal of Enterprise Information Management, 37(2), 698–720. https://doi.org/10.1108/JEIM-09-2022-0345

Lim, K. Y. H., Dang, L. V., & Chen, C. H. (2024b). Incorporating supply and production digital twins to mitigate demand disruptions in multi-echelon networks. International Journal of Production Economics, 273, Article 109258. https://doi.org/10.1016/j.ijpe.2024.109258

Mešić, A., Miškić, S., Stević, Ž., & Mastilo, Z. (2022). Hybrid MCDM solutions for evaluation of the logistics performance index of the Western Balkan countries. Economics, 10(1), 13–34. https://doi.org/10.2478/eoik-2022-0004

Nasiri, M., Ukko, J., Saunila, M., & Rantala, T. (2020). Managing the digital supply chain: The role of smart technologies. Technovation, 96–97, Article 102121. https://doi.org/10.1016/j.technovation.2020.102121

Opricovic, S. (1998). Visekriterijumska optimizacija sistema u gradjevinarstvu [Multicriteria optimization of civil engineering systems] [Doctoral dissertation, University of Belgrade].

Özek, A., & Yildiz, A. (2020). Digital supplier selection for a garment business using interval type-2 fuzzy TOPSIS. Textile and Apparel, 30(1), 61–72. https://doi.org/10.32710/tekstilvekonfeksiyon.569884

Pamucar, D., Deveci, M., Gokasar, I., Işık, M., & Zizovic, M. (2021). Circular economy concepts in urban mobility alternatives using integrated DIBR method and fuzzy Dombi CoCoSo model. Journal of Cleaner Production, 323, Article 129096. https://doi.org/10.1016/j.jclepro.2021.129096

Pamucar, D., Simic, V., Lazarević, D., Dobrodolac, M., & Deveci, M. (2022). Prioritization of sustainable mobility sharing systems using integrated fuzzy DIBR and fuzzy-rough EDAS model. Sustainable Cities and Society, 82, Article 103910. https://doi.org/10.1016/j.scs.2022.103910

Pamucar, D., Ulutaş, A., Topal, A., Karamaşa, Ç., & Ecer, F. (2024). Fermatean fuzzy framework based on preference selection index and combined compromise solution methods for green supplier selection in textile industry. International Journal of Systems Science: Operations & Logistics, 11(1), Article 2319786. https://doi.org/10.1080/23302674.2024.2319786

Peldschus, F., Vaigauskas, E., & Zavadskas, E. K. (1983). Technologische entscheidungen bei der berücksichtigung mehrerer Ziehle [Technological decisions when considering multiple objectives. Bauplanung Bautechnik, 37(4), 173–175.

Peldschus, F., Zavadskas, E. K., Turskis, Z., & Tamosaitiene, J. (2010). Sustainable assessment of construction site by applying Game Theory. Inzinerine Ekonomika – Engineering Economics, 21(3), 223–237.

Puška, A., Štilić, A., Pamučar, D., Božanić, D., & Nedeljković, M. (2024). Introducing a Novel multi-criteria Ranking of Alternatives with Weights of Criterion (RAWEC) model. MethodsX, 12, Article 102628. https://doi.org/10.1016/j.mex.2024.102628

Radovanović, M., Božanić, D., Tešić, D., Puška, A., Hezam, I. M., & Jana, C. (2023). Application of hybrid DIBR-FUCOM-LMAW-Bonferroni-grey-EDAS model in multicriteria decision-making. Facta Universitatis, Series: Mechanical Engineering, 21(3), 387–403. https://doi.org/10.22190/FUME230824036R

Rashid, A., Rasheed, R., Ngah, A. H., Pradeepa Jayaratne, M. D. R., Rahi, S., & Tunio, M. N. (2024). Role of information processing and digital supply chain in supply chain resilience through supply chain risk management. Journal of Global Operations and Strategic Sourcing, 17(2), 429–447. https://doi.org/10.1108/JGOSS-12-2023-0106

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5

Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process. RWS Publications.

Sahoo, S. K., Goswami, S. S., & Halder, R. (2024). Supplier selection in the age of industry 4.0: A review on MCDM applications and trends. Decision Making Advances, 2(1), 32–47. https://doi.org/10.31181/dma21202420

Sarkis, J., Kouhizadeh, M., & Zhu, Q. S. (2021). Digitalization and the greening of supply chains. Industrial Management & Data Systems, 121(1), 65–85. https://doi.org/10.1108/IMDS-08-2020-0450

Schilling, L., & Seuring, S. (2024). Linking the digital and sustainable transformation with supply chain practices. International Journal of Production Research, 62(3), 949–973. https://doi.org/10.1080/00207543.2023.2173502

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Sharma, M., & Joshi, S. (2023). Digital supplier selection reinforcing supply chain quality management systems to enhance firm’s performance. The TQM Journal, 35(1), 102–130. https://doi.org/10.1108/TQM-07-2020-0160

Sheykhzadeh, M., Ghasemi, R., Vandchali, H. R., Sepehri, A., & Torabi, S. A. (2024). A hybrid decision-making framework for a supplier selection problem based on lean, agile, resilience, and green criteria: A case study of a pharmaceutical industry. Environment, Development and Sustainability, 26, 30969–30996. https://doi.org/10.1007/s10668-023-04135-7

Sivilevičius, H., Zavadskas, E. K., & Turskis, Z. (2008). Quality attributes and complex assessment methodology of the asphalt mixing plant. The Baltic Journal of Road and Bridge Engineering, 3(3), 161–166. https://doi.org/10.3846/1822-427X.2008.3.161-166

Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, Article 106231. https://doi.org/10.1016/j.cie.2019.106231

Sun, J., Liu, Y., Xu, J., Zhu, F., & Wang, N. (2024). A probabilistic uncertain linguistic decision-making model for resilient supplier selection based on extended TOPSIS and BWM. International Journal of Fuzzy Systems, 26, 992–1015. https://doi.org/10.1007/s40815-023-01649-0

Tavana, M., Shaabani, A., Di Caprio, D., & Amiri, M. (2021). An integrated and comprehensive fuzzy multicriteria model for supplier selection in digital supply chains. Sustainable Operations and Computers, 2, 149–169. https://doi.org/10.1016/j.susoc.2021.07.008.

Tešić, D., & Marinković, D. (2023). Application of fermatean fuzzy weight operators and MCDM model DIBR-DIBR II-NWBM-BM for efficiency-based selection of a complex combat system. Journal of Decision Analytics and Intelligent Computing, 3(1), 243–256. https://doi.org/10.31181/10002122023t

Tešić, D., Božanić, D., Stojković, D., Puška, A., & Stojanović, I. (2023). DIBR–DOMBI–FUZZY MAIRCA model for strategy selection in the system of defense. Discrete Dynamics in Nature and Society, 2023, Article 4961972. https://doi.org/10.1155/2023/4961972

Tsang, Y. P., Yang, T., Chen, Z. S., Wu, C. H., & Tan, K. H. (2022). How is extended reality bridging human and cyber-physical systems in the IoT-empowered logistics and supply chain management?. Internet of Things, 20, Article 100623. https://doi.org/10.1016/j.iot.2022.100623

Turskis, Z., & Keršulienė, V. (2024). SHARDA–ARAS: A methodology for prioritising project managers in sustainable development. Mathematics, 12(2), Article 219. https://doi.org/10.3390/math12020219

Turskis, Z., & Šniokienė, V. (2024). IoT-driven transformation of circular economy efficiency: An overview. Mathematical and Computational Applications, 29(4), Article 49. https://doi.org/10.3390/mca29040049

Ulutaş, A., Balo, F., & Topal, A. (2023). Identifying the most efficient natural fibre for common commercial building insulation materials with an integrated PSI, MEREC, LOPCOW and MCRAT model. Polymers, 15(6), Article 1500. https://doi.org/10.3390/polym15061500

Ulutaş, A., Topal, A., & Ecer, F. (2025a). Green-resilient supplier selection via a new integrated rough multi-criteria framework. Journal of Industrial Information Integration, 47, Article 100913. https://doi.org/10.1016/j.jii.2025.100913

Ulutaş, A., Topal, A., & Ecer, F. (2025b). The Alternative Prioritization and Assessment System (ALPAS) method for environmental performance evaluation. Mathematics, 13(20), Article 3333. https://doi.org/10.3390/math13203333

Wang, W., Chen, Y., Zhang, T., Deveci, M., & Kadry, S. (2024). The use of AI to uncover the supply chain dynamics of the primary sector: Building resilience in the food supply chain. Structural Change and Economic Dynamics, 70, 544–566. https://doi.org/10.1016/j.strueco.2024.05.010

Weber, C. A., Current, J. R., & Benton, W. C. (1991). Vendor selection criteria and methods. European Journal of Operational Research, 50(1), 2–18. https://doi.org/10.1016/0377-2217(91)90033-R

Wen, Z., Liao, H., & Zavadskas, E. K. (2020). MACONT: Mixed aggregation by comprehensive normalization technique for multi-criteria analysis. Informatica, 31(4), 857–880. https://doi.org/10.15388/20-INFOR41

Wieters, C. D., & Ostrom, L. L. (1979). Supplier evaluation as a new marketing tool. Industrial Marketing Management, 8(2), 161–166. https://doi.org/10.1016/0019-8501(79)90056-7

Zavadskas, E. K., & Kaklauskas, A. (1996). Pastatų sistemotechninis įvertinimas [Multicriteria evaluation of building]. Technika (in Lithuanian).

Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐making. Technological and Economic Development of Economy, 16(2), 159–172. https://doi.org/10.3846/tede.2010.10

Zavadskas, E. K., Kaklauskas, A., & Šarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. Technological and Economic Development of Economy, 1(3), 131–139.

Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Kalibatas, D. (2009). An approach to multi‐attribute assessment of indoor environment before and after refurbishment of dwellings. Journal of Environmental Engineering and Landscape Management, 17(1), 5–11. https://doi.org/10.3846/1648-6897.2009.17.5-11

Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika, 122(6), 3–6. https://doi.org/10.5755/j01.eee.122.6.1810

Zavadskas, E. K., Turskis, Z., Vilutienė, T., & Lepkova, N. (2017). Integrated group fuzzy multi-criteria model: Case of facilities management strategy selection. Expert Systems with Applications, 82, 317–331. https://doi.org/10.1016/j.eswa.2017.03.072

Zulqarnain, R. M., Dai, H. -L., Ma, W.-X., Siddique, I., Askar, S., & Naveed, H. (2024). Retraction: Supplier selection in green supply chain management using correlation-based TOPSIS in a q-rung orthopair fuzzy soft environment. Heliyon, 10(11), Article e32145. https://doi.org/10.1016/j.heliyon.2024.e32145

View article in other formats

CrossMark check

CrossMark logo

Published

2025-12-08

Issue

Section

Articles

How to Cite

Ulutaş, A., Ecer, F., & Turskis, Z. (2025). Multiple Normalization Rating Analysis (MUNRA) and its application to digital supplier selection in the textile industry. Technological and Economic Development of Economy, 31(6), 2074–2104. https://doi.org/10.3846/tede.2025.25346

Share