Inflation and global supply chain pressure in Eurozone: a time-varying causal analysis
Abstract
The aim of this paper is to analyze the causal relationship between inflation and global supply chain pressure in the Eurozone. In contrast to the full-sample causality method, this paper utilizes the bootstrap subsample rolling window causality method to account for structural changes. Initially, the computed vector autoregressive models demonstrate that the short-term relationship between inflation and global supply chain pressure is unstable. The dynamic causal relationship is reexamined in the subsample rolling window causality test using a time-varying method (RB bootstrap-based modified-LR causality test). The results indicate that inflation is influenced by the expansion of global supply chain pressure in a variety of sub-periods, with both positive and negative effects. Conversely, inflation fluctuations increase the uncertainty of the Global Supply Chain Pressure Index. The novelty of the findings is that they illustrate bidirectional causal relationships between the two variables, which is in contrast to the existing body of empirical research that does not support the direction of causality. The implications of these findings emphasize the need to implement appropriate monetary policy measures in order to mitigate the inflationary consequences of disruptions in the global supply chain and to ensure a more stable supply chain network.
Keyword : causal analysis, inflation, global supply chain pressure

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Andersson, F. N. G. (2023). The problem of stagflation: How should the European Central Bank respond to the increase in inflation? European View, 22(1), 39–47. https://doi.org/10.1177/17816858231157540
Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica, 61(4), 821–856. https://doi.org/10.2307/2951764
Andrews, D. W. K., & Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica, 62(6), 1383–1414. https://doi.org/10.2307/2951753
Andriantomanga, Z., Bolhuis, M. A., & Hakobyan, S. (2023). Global supply chain disruptions: Challenges for inflation and monetary policy in Sub-Saharan Africa. IMF Working Papers, 2023(039), 1–41. https://doi.org/10.5089/9798400235436.001
Arrazola, M., & Hevia, J. de. (2008). A simple inflation indicator for the euro zone. Applied Economics, 40(18), 2387–2394. https://doi.org/10.1080/00036840600959917
Atigala, P., Maduwanthi, T., Gunathilake, V., Sathsarani, S., & Jayathilaka, R. (2022). Driving the pulse of the economy or the dilution effect: Inflation impacting economic growth. PLoS ONE, 17(8), Article e0273379. https://doi.org/10.1371/journal.pone.0273379
Balan, S., Vrat, P., & Kumar, P. (2006). Assessing the challenges and opportunities of global supply chain management. International Journal of Value Chain Management, 1(2), 105–116. https://doi.org/10.1504/IJVCM.2006.011180
Balcilar, M., Ozdemir, Z. A., & Arslanturk, Y. (2010). Economic growth and energy consumption causal nexus viewed through a bootstrap rolling window. Energy Economics, 32(6), 1398–1410. https://doi.org/10.1016/j.eneco.2010.05.015
Balcilar, M., & Ozdemir, Z. A. (2013). The export-output growth nexus in Japan: A bootstrap rolling window approach. Empirical Economics, 44(2), 639–660. https://doi.org/10.1007/s00181-012-0562-8
Benigno, G., di Giovanni, J., Groen, J. J., & Noble, A. I. (2022). The GSCPI: A new barometer of global supply chain pressures (FRB OF New York Staff Report No. 1017). SSRN. https://doi.org/10.2139/ssrn.4114973
Boehl, G., Goy, G., & Strobel, F. (2021). A structural investigation of quantitative easing (Deutsche Bundesbank Discussion Paper No. 01/2021). SSRN. https://doi.org/10.2139/ssrn.3782958
Brugnolini, L., & Ragusa, G. (2022). Euro Area deflationary pressure index. Computational Economics, 60, 883–900. https://doi.org/10.1007/s10614-021-10170-1
Casoli, C., Manera, M., & Valenti, D. (2022). Energy shocks in the Euro area: Disentangling the pass-through from oil and gas prices to inflation (FEEM Working Paper No. 45) SSRN. https://doi.org/10.2139/ssrn.4307682
Cristadoro, R., Forni, M., Reichlin, L., & Veronese, G. (2005). A core inflation indicator for the Euro Area. Journal of Money, Credit and Banking, 37(3), 539–560. https://doi.org/10.1353/mcb.2005.0028
Ding, Z., & Granger, C. W. J. (1996). Modeling volatility persistence of speculative returns: A new approach. Journal of Econometrics, 73(1), 185–215. https://doi.org/10.1016/0304-4076(95)01737-2
Egle, W. P. (1961). The cost-push theory of inflation and tight-money policy. Weltwirtschaftliches Archiv, 86, 218–231. http://www.jstor.org/stable/40434803
Ekici, O. (2022). Supply chain disruptions and the effects on price stability: An Intercountry analysis In U. Akkucuk (Ed.), Managing inflation and supply chain disruptions in the global economy (pp. 132–150). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-5876-1.ch009
Federal Reserve Bank of New York. (n.d.-a). https://www.newyorkfed.org/
Federal Reserve Bank of New York. (n.d.-b). Global Supply Chain Pressure Index (GSCPI). https://www.newyorkfed.org/research/policy/gscpi#/overview
Fusacchia, I. (2020). Evaluating the impact of the US–China trade war on Euro Area economies: A tale of global value chains. Italian Economic Journal, 6(3), 441–468. https://doi.org/10.1007/s40797-019-00109-9
Gechev, V. (2019). The global financial crisis’ impact on the Eurozone: So far, A lost decade. SSRN. https://doi.org/10.2139/ssrn.3331989
Ghysels, E., Hill, J. B., & Motegi, K. (2016). Testing for Granger causality with mixed frequency data. Journal of Econometrics, 192(1), 207–230. https://doi.org/10.1016/j.jeconom.2015.07.007
di Giovanni, J., Kalemli-Özcan, Ṣ., Silva, A., & Yildirim, M. A. (2022). Global supply chain pressures, international trade, and inflation (Working Paper No. 30240). National Bureau of Economic Research. https://doi.org/10.3386/w30240
Gordon, M. V., & Clark, T. E. (2023). The impacts of supply chain disruptions on inflation. Economic Commentary, 2023–08. https://doi.org/10.26509/frbc-ec-202308
Gozgor, G., Khalfaoui, R., & Yarovaya, L. (2023). Global supply chain pressure and commodity markets: Evidence from multiple wavelet and quantile connectedness analyses. Finance Research Letters, 54, Article 103791. https://doi.org/10.1016/j.frl.2023.103791
Ha, J., Kose, M. A., & Ohnsorge, F. (2023). One-stop source: A global database of inflation. Journal of International Money and Finance, 137, Article 102896. https://doi.org/10.1016/j.jimonfin.2023.102896
Hacker, R. S., & Hatemi-J, A. (2006). Tests for causality between integrated variables using asymptotic and bootstrap distributions: Theory and application. Applied Economics, 38(13), 1489–1500. https://doi.org/10.1080/00036840500405763
Hansen, B. E. (1992). Tests for parameter instability in regressions with I (1) processes. Journal of Business and Economic Statistics, 10(3), 321–335. https://doi.org/10.2307/1391545
Harding, M., Lindé, J., & Trabandt, M. (2023). Understanding post-COVID inflation dynamics. Journal of Monetary Economics, 140(S), S101–S118. https://doi.org/10.1016/j.jmoneco.2023.05.012
Hupka, Y. (2022). Leverage and the global supply chain. Finance Research Letters, 50, Article 103269. https://doi.org/10.1016/j.frl.2022.103269
Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica, 59(6), 1551–1580. https://doi.org/10.2307/2938278
Johansen, S. (1995). Likelihood-based inference in cointegrated vector autoregressive models. Oxford Academic. https://doi.org/10.1093/0198774508.001.0001
Krompas, I. (2022). Natural gas price inefficiencies as an obstacle in taming EU inflation. HAPSc Policy Briefs Series, 3(2), 146–152. https://doi.org/10.12681/hapscpbs.33794
Kyriazis, N. A., & Economou, E. M. L. (2019). Brexit and new perspectives of an unconventional way of Eurozone revival. Journal of Central Banking Theory and Practice, 8(3), 5–20. https://doi.org/10.2478/jcbtp-2019-0021
Li, S., Wu, J., & Yang, Z. (2023). Impact of COVID-19 pandemic: A global inflation crisis. BCP Business & Management, 44, 163–172. https://doi.org/10.54691/bcpbm.v44i.4808
Miccoli, M., Riggi, M., Rodano, M. L., & Sigalotti, L. (2017). A Composite index of inflation tendencies in the Euro Area (Bank of Italy Occasional Paper No. 395). SSRN. https://doi.org/10.2139/ssrn.3056283
Min, H. (2022). Examining the impact of energy price volatility on commodity prices from energy supply chain perspectives. Energies, 15(21), Article 7957. https://doi.org/10.3390/en15217957
Neri, S., & Ropele, T. (2015). The macroeconomic effects of the sovereign debt crisis in the Euro Area (Bank of Italy Working Paper No. 1007). SSRN. https://doi.org/10.2139/ssrn.2600900
Nickel, C., Koester, G., & Lis, E. (2022). Inflation developments in the Euro Area since the onset of the pandemic. Intereconomics, 57, 69–75. https://doi.org/10.1007/s10272-022-1032-y
Nyblom, J. (1989). Testing the constancy of parameters over time. Journal of the American Statistical Association, 84, 223–230. https://doi.org/10.1080/01621459.1989.10478759
Pasimeni, P. (2022). Supply or demand, that is the question: Decomposing Euro Area inflation. Intereconomics, 57, 384–393. https://doi.org/10.1007/s10272-022-1092-z
Pesaran, M. H., & Timmermann, A. (2007). Selection of estimation window in the presence of breaks. Journal of Econometrics, 137(1), 134–161. https://doi.org/10.1016/j.jeconom.2006.03.010
Qin, M., Wu, T., Tao, R., Su, C.-W., & Petru, S. (2022). The inevitable role of bilateral relation: A fresh insight into the bitcoin market. Economic Research-Ekonomska Istraživanja, 35(1), 4260–4279. https://doi.org/10.1080/1331677X.2021.2013269
Qin, M., Su, C.-W., Wang, Y., & Doran, N. M. (2024). Could “Digital gold” resist global supply chain pressure? Technological and Economic Development of Economy, 30(1), 1–21. https://doi.org/10.3846/tede.2023.18557
Roderweis, P., Saadaoui, J., & Serranito, F. (2023). Is quantitative easing productive? The role of bank lending in the monetary transmission process (Economix Working Paper No. 2023-17).
Santacreu, A. M., & Labelle, J. (2022). Supply chain disruptions and inflation during the COVID-19. Economic Synopses, 2022(11). https://doi.org/10.20955/es.2022.11
Santos, C. C. R., & Donato, V. (2023). The impacts airising from the COVID-19 pandemic on supply chains. Revista de Gestão e Secretariado (Management and Administrative Professional Review), 14(4), 4794–4806. https://doi.org/10.7769/gesec.v14i4.1943
Sanusi, K., Meyer, D., & Ślusarczyk B. (2017). The relationship between changes in inflation and financial development. Polish Journal of Management Studies, 16(2), 253–265. https://doi.org/10.17512/pjms.2017.16.2.22
Shah, I. H., & Sosvilla‐Rivero, S. (2021). Incorporating asset price stability in the European Central Bank’s inflation targeting framework. International Journal of Finance & Economics, 26(2), 2022–2043. https://doi.org/10.1002/ijfe.1891
Shapiro, A. H. (2022). Decomposing supply and demand driven inflation (Working Paper No. 2022-18). Federal Reserve Bank of San Francisco. https://doi.org/10.24148/wp2022-18
Shteynberg, E., Brady, E., Sultana, F., Bishop, L., Kolachina, V., Bhalala, D., Photiades, E., Chopra, A., Batra, M., & Gregory, D. (2022). The road back: Our global supply chain crisis. SSRN. https://doi.org/10.2139/ssrn.4148774
Shukur, G., & Mantalos, P. (2000). A simple investigation of the Granger-causality test in integrated-cointegrated VAR systems. Journal of Applied Statistics, 27(8), 1021–1031. https://doi.org/10.1080/02664760050173346
Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 1–48. https://doi.org/10.2307/1912017
Sims, C. A. (2003). Implications of rational inattention. Journal of Monetary Economics, 50(3), 665–690. https://doi.org/10.1016/S0304-3932(03)00029-1
Sims, C. A., Stock, J. H., & Watson, M. W. (1990). Inference in linear time series models with some unit roots. Econometrica, 58(1), 113–144. https://doi.org/10.2307/2938337
Škare, M., Blažević Burić, S., & Sinković, D. (2023). Effects of energy prices shocks on global inflation: A panel structural VAR approach. Acta Montanistica Slovaca, 27, 929–943. https://doi.org/10.46544/AMS.v27i4.08
Su, C.-W., Qin, M., Tao, R., & Zhang, X. (2020). Is the status of gold threatened by Bitcoin? Economic Research – Ekonomska Istraživanja, 33(1), 420–437. https://doi.org/10.1080/1331677X.2020.1718524
Su, C.-W., Pang, L., Umar, M., & Lobonţ, O.-R. (2022). Will gold always shine amid world uncertainty? Emerging Markets Finance and Trade, 58(12), 3425–3438. https://doi.org/10.1080/1540496X.2022.2050462
Taherzadeh, O. (2021). Locating pressures on water, energy and land resources across global supply chains. Journal of Cleaner Production, 321, Article 128701. https://doi.org/10.1016/j.jclepro.2021.128701
Takami, N. (2015). The baffling new inflation: How cost-push inflation theories influenced policy debate in the late-1950s United States. History of Political Economy, 47(4), 605–629. https://doi.org/10.1215/00182702-3321336
Warin, T. (2022). Supply chains under pressure: How can data science help? CIRANO PERSPECTIVES Journal, 2022(6), 1–5. https://doi.org/10.54932/NJYX4623
Weintraub, S. (1959). A general theory of the price level, output, income distribution, and economic growth. Chilton.
Ye, M., Si Mohammed, K. S., Tiwari, S., Ali Raza, S., & Chen, L. (2023). The effect of the global supply chain and oil prices on the inflation rates in advanced economies and emerging markets. Geological Journal, 58(7), 2805–2817. https://doi.org/10.1002/gj.4742
Zavala, A., Nowicki, D., & Ramirez-Marquez, J. E. (2019). Quantitative metrics to analyze supply chain resilience and associated costs. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 233(2), 186–199. https://doi.org/10.1177/1748006X18766738
Zeileis, A., Leisch, F., Kleiber, C., & Hornik, K. (2005). Monitoring structural change in dynamic econometric models. Journal of Applied Econometrics, 20(1), 99–121. https://doi.org/10.1002/jae.776