Assessment of chosen technologies improving seniors' quality of life in the context of sustainable development

    Katarzyna Halicka Affiliation


Sustainable development is a perspective on economic progress that takes into account the equilibrium among social, economic, and environmental elements. This implies that endeavours aimed at development should guarantee the satisfaction of present generations’ requirements while safeguarding the capacity of future generations to fulfil their own necessities. In the context of an aging society, sustainable development involves providing solutions, services, and technologies that address the needs of older people while also minimizing negative impacts on the environment and future generations. The aim of this article is to identify, analyse and evaluate technologies that improve the quality of life of older people without compromising the well-being of future generations from ecological, social, ethical and other perspectives. Technologies that enhance the quality of life for older people are often referred to as gerontechnologies in the literature.

The article identifies and then selects 3 gerontechnologies that can improve the quality of life of older people while remaining sustainable. Further, 42 criteria for evaluating gerontechnologies were identified. These gerontechnologies were then evaluated by potential users. A ranking of gerontechnologies was further developed. CAWI and CATI methods were used in the survey. The SAW method was used to build the ranking.

Keyword : older people, gerontechnology, SAW, decision making, ranking, sustainable development

How to Cite
Halicka, K. (2024). Assessment of chosen technologies improving seniors’ quality of life in the context of sustainable development. Technological and Economic Development of Economy, 30(1), 107–128.
Published in Issue
Feb 8, 2024
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Abdi, S., de Witte, L., & Hawley, M. (2020). Emerging technologies with potential care and support applications for older people: Review of gray literature. Journal of Medical Internet Research Aging, 3(2), Article e17286.

Abdi, S., de Witte, L., & Hawley, M. (2021). Exploring the potential of emerging technologies to meet the care and support needs of older people: A Delphi survey. Geriatrics, 6(1), Article 19.

Astasio-Picado, Á., Cobos-Moreno, P., Gómez-Martín, B., Verdú-Garcés, L., & Zabala-Baños, M. d. C. (2022). Efficacy of interventions based on the use of information and communication technologies for the promotion of active aging. International Journal of Environmental Research and Public Health, 19(3), Article 1534.

Bagočius, V., Zavadskas, E. K., & Turskis, Z. (2014). Selecting a location for a liquefied natural gas terminal in the Eastern Baltic Sea. Transport, 29(1), 69–74.

Bouma H., & Graafmans J. A. M. (Eds.) (1992). Studies in health technology and informatics: vol. 3. Gerontechnology. IOS Press.

Chen, K., & Chan, A. (2014). Predictors of gerontechnology acceptance by older Hong Kong Chinese. Technovation, 34(2), 126–135.

Churchman, C. W., & Ackoff, R. L. (1954). An approximate measure of value. Operations Research Society of America, 2(2), 172–187.

Dahmen, J., Minor, B., Cook, D., Vo, T., & Edgecombe, M. S. (2018). Smart home-driven digital memory notebook support of activity self-management for older adults. Gerontechnology, 17(2), 113–125.

Ejdys, J. (2020). Trust-based determinants of future intention to use technology. Foresight and STI Governance, 14(1), 60–68.

Ejdys, J., & Gulc, A. (2022). Factors influencing the intention to use assistive technologies by older adults. Human Technology, 18(1), 6–28.

Ejdys, J., & Halicka, K. (2018). Sustainable adaptation of new technology – The case of humanoids used for the care of older adults. Sustainability, 10(10), Article 3770.

Eurostat. (2021). More than a fifth of the EU population are aged 65 or over.

Eurostat. (2022). How many healthy life years for EU men and women?

Graafmans, J. A. M., Bouma, H., & Brouwers, A. (1992). Gerontechnology: An approach to “Aging and technology” as seen from a technologi-cal perspective. Technische Universiteit Eindhoven.

Halicka, K., & Kacprzak, D. (2021). Linear ordering of selected gerontechnologies using selected MCGDM methods. Technological and Economic Development of Economy, 27(4), 921–947.

Halicka, K., & Surel, D. (2021). Gerontechnology – new opportunities in the service of older adults. Engineering Management in Production and Services, 13(3), 114–126.

Halicka, K., & Surel, D. (2022). Smart living technologies in the context of improving the quality of life for older people: The case of the humanoid Rudy Robot. Human Technology, 18(2), 191–208.

Hsieh, K. L., Fanning, J. T., & Sosnoff, J. J. (2019). A smartphone fall risk application is valid and reliable in older adults during real-world test-ing. Gerontechnology, 18(1), 29–35.

Hsieh, K. L., Fanning, J. T., Rogers, W. A., Wood, T. A., & Sosnoff, J. J. (2018). A fall risk mHealth app for older adults: Development and usa-bility study. JMIR Aging, 1(2). Article e11569.

Huang, G., & Oteng, S. A. (2023). Gerontechnology for better elderly care and life quality: A systematic literature review. European Journal of Ageing, 20(1), Article 27.

INF Robotics. (2020). Rudy. Retrieved January 30, 2023, from

International Society for Gerontechnology. (1997). ISG Newsletter, 8(2).

Jachan, D., Müller-Werdan, U., Lahmann, N., & Strube-Lahmann, S. (2021). Smart@home – supporting safety and mobility of elderly and care dependent people in their own homes through the use of technical assistance systems and conventional mobility supporting tools: A cross-sectional survey. BMC Geriatrics, 21(1), Article 205.

Kacprzak, D. (2019). A doubly extended TOPSIS method for group decision making based on ordered fuzzy numbers. Expert Systems with Appli-cations, 116, 243–254.

Kacprzak, D. (2020). An extended TOPSIS method based on ordered fuzzy numbers for group decision making. Artificial Intelligence Review, 53(3), 2099–2129.

Kalache, A., & Gatti, A. (2002). Active ageing: A policy framework. /publications/active_ageing/en/

Kozlowska, J. (2022). Methods of multi-criteria analysis in technology selection and technology assessment: A systematic literature review. Engi-neering Management in Production and Services, 14(2), 116–137.

Lee, C., Kang, B., & Shin, J. (2015). Novelty-focused patent mapping for technology opportunity analysis. Technological Forecasting and Social Change, 90(B), 355–365.

Ma, Q., Chan, A. H. S., & Teh, P.-L (2021). Insights into older adults’ technology acceptance through meta-analysis. International Journal of Human-Computer Interaction, 37(11), 1049–1062.

MacCrimmon, K. R. (1968). Decision making among multiple-attribute alternatives: A survey and consolidated approach (RM 4823-ARPA). Rand Corporation, Santa Monica, CA.

Martín-García, A. V. (2018). Aging education and technological virtualization. Classroom, 24, 29–42.

Martinez-Martin, E., Escalona, F., & Cazorla, M. (2020). Socially assistive robots for older adults and people with autism: An overview. Electron-ics, 9(2), Article 367.

Martínez Ortega, M. P., Polo Luque, M. L., & Carrasco Fernández, B. (2002). Historical vision of the concept of old age from the Middle Ages. Cultura de los Cuidados, 6(11), 40–46.

Medineckiene, M., Turskis, Z., Zavadskas, E. K., & Tamošaitiene, J. (2010). Multi-criteria selection of the one flat dwelling house, taking into account the construction impact on environment. In 10th International Conference Modern Building Materials, Structures and Techniques (pp. 455–460). Vilnius.

Mi, L., Huang, L.-c., Han, Z.-x., Miao, H., & Wu, F. (2022). Forecasting and evaluating emerging technologies based on supply and demand matching – a case study of China’s gerontechnology. Technology Analysis & Strategic Management, 34(3), 290–306.

Nap, H. H., Diaz-Orueta, U., González, M. F., Lozar-Manfreda, K., Facal, D., Dolničar, V., Oyarzun, D., Ranga, M. M., & de Schutter, B. (2014). Older people’s perceptions and experiences of a digital learning game. Gerontechnology, 13(3), 322–331.

National Research Council. (2004). Technology for adaptive aging. The National Academies Press.

National Science and Technology Council. (2019). Emerging technologies to support an aging population.

Noh, H., Song, Y.-K., & Lee, S. (2016). Identifying emerging core technologies for the future: Case study of patents published by leading tele-communication organizations. Telecommunications Policy, 40(10–11), 956–970.

Rodríguez, A. C., Roda, C., Montero, F., González, P., & Navarro, E. (2016). An interactive fuzzy inference system for teletherapy of older people. Cognitive Computation, 8(2), 318–335.

Roszkowska, E., & Kacprzak, D. (2016). The fuzzy saw and fuzzy TOPSIS procedures based on ordered fuzzy numbers. Information Sciences, 369, 564–584.

Sale, P. (2018). Gerontechnology, domotics and robotics. In Masiero, S., & Carraro, U. (Eds.), Rehabilitation medicine for elderly patients (pp. 161–169). Springer International Publishing.

Silva, T., Caravau, H., & Campelo, D. (2017). Information needs about public and social services of Portuguese elderly. In Proceedings of the 3rd International Conference on Information and Communication Technologies for Ageing Well and e-Health (ICT4AWE) (vol. 1, pp. 46–57). Porto, Portugal. SciTePress.

Simsik, D. (2012). The mechatronic shoe: A new rehabilitation. In 29th International Symposium on Automation and Robotics in Construction (ISARC). Eindhoven, Netherlands.

Tan, C. K. K., Lou, V. W. Q., Cheng, C. Y. M., He, P. C., & Mor, Y. Y. (2023). Technology acceptance of a social robot (LOVOT) among single older adults in Hong Kong and Singapore: Protocol for a multimethod study. JMIR Research Protocols, 12, Article e48618.

Tellier, M., Auger, C., Bier, N., & Demers, L. (2020). Use of an electronic pillbox by older adults with mild Alzheimer’s disease: Impact on medi-cation administration and adherence. Gerontechnology, 19(1), 66–76.

Thilo, F. J. S., Schols, J. M. G. A., Halfens, R. J. G., Linhart, M., & Hahn, S. (2021). Deciding about the use of a Personal Safety Alerting De-vice – The need for a legitimation process: A qualitative study. Journal of Advanced Nursing, 77(1), 331–342.

Wang, T.-C., & Chang, T.-H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33(4), 870–880.

Van Bronswijk, J. E. M. H., Bouma, H., & Fozard, J. L. (2002). Technology for quality of life: An enriched taxonomy. Gerontechnology, 2(2), 169–172.

Volvačiovas, R., Turskis, Z., Aviža, D., & Mikštiene, R. (2013). Multi-attribute selection of public buildings retrofits strategy. Procedia Engineer-ing, 57, 1236–1241.

Zainal, A., Aziz, N. F. A., Ahmad, N. A., Razak, F. H. A., Razali, F., Azmi, N. H., & Koyou, H. L. (2023). Usability measures used to enhance user experience in using digital health technology among elderly: A systematic review. Bulletin of Electrical Engineering and Informatics, 12(3), 1825–1832.

Zavadskas, E. K., Stević, Ž., Turskis, Z., & Tomašević, M. (2019). A novel extended EDAS in Minkowski space (EDAS-M) method for evaluat-ing autonomous vehicles. Studies in Informatics and Control, 28(3), 255–264.

Zhou, J., Zhang, B., Tan, R., Tseng, M.-L., & Zhang, Y. (2020). Exploring the systematic attributes influencing gerontechnology adoption for elderly users using a meta-analysis, Sustainability, 12(7), Article 2864.