Nonparametric numerical approaches to probability weighting function construct for manifestation and prediction of risk preferences

    Sheng Wu Affiliation
    ; Zhen-Song Chen Affiliation
    ; Witold Pedrycz Affiliation
    ; Kannan Govindan Affiliation
    ; Kwai-Sang Chin Affiliation


Probability weighting function (PWF) is the psychological probability of a decision-maker for objective probability, which reflects and predicts the risk preferences of decision-maker in behavioral decisionmaking. The existing approaches to PWF estimation generally include parametric methodologies to PWF construction and nonparametric elicitation of PWF. However, few of them explores the combination of parametric and nonparametric elicitation approaches to approximate PWF. To describe quantitatively risk preferences, the Newton interpolation, as a well-established mathematical approximation approach, is introduced to task-specifically match PWF under the frameworks of prospect theory and cumulative prospect theory with descriptive psychological analyses. The Newton interpolation serves as a nonparametric numerical approach to the estimation of PWF by fitting experimental preference points without imposing any specific parametric form assumptions. The elaborated nonparametric PWF model varies in accordance with the number of the experimental preference points elicitation in terms of its functional form. The introduction of Newton interpolation to PWF estimation into decision-making under risk will benefit to reflect and predict the risk preferences of decision-makers both at the aggregate and individual levels. The Newton interpolation-based nonparametric PWF model exhibits an inverse S-shaped PWF and obeys the fourfold pattern of decision-makers’ risk preferences as suggested by previous empirical analyses.

First published online 17 April 2023

Keyword : probability weighting function, risk preference, nonparametric numerical approach, Newton interpolation, preference points, decision-making under risk

How to Cite
Wu, S., Chen, Z.-S., Pedrycz, W., Govindan, K., & Chin, K.-S. (2023). Nonparametric numerical approaches to probability weighting function construct for manifestation and prediction of risk preferences. Technological and Economic Development of Economy, 29(4), 1127–1167.
Published in Issue
Jul 14, 2023
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Abdellaoui, M. (2000). Parameter-free elicitation of utility and PWFs. Management Science, 46(11), 1497–1512.

Abdellaoui, M., Bleichrodt, H., & L’Haridon, O. (2008). A tractable method to measure utility and loss aversion under prospect theory. Journal of Risk and Uncertainty, 36(3), 245–266.

Abdellaoui, M., Bleichrodt, H., & Paraschiv, C. (2007). Loss aversion under prospect theory: A parameter-free measurement. Management Science, 53(10), 1659–1674.

Abdellaoui, M., L’Haridon, O., & Zank, H. (2010). Separating curvature and elevation: A parametric PWF. Journal of Risk and Uncertainty, 41(1), 39–65.

Abdellaoui, M., Vossmann, F., & Weber, M. (2005). Choice-based elicitation and decomposition of decision weights for gains and losses under uncertainty. Management Science, 51(9), 1384–1399.

Al‐Nowaihi, A., & Dhami, S. (2010). Probability Weighting Functions. In Wiley encyclopedia of operations research and management science. John Wiley & Sons.

Baillon, A., Bleichrodt, H., Emirmahmutoglu, A., Jaspersen, J., & Peter, R. (2022). When risk perception gets in the way: Probability weighting and underprevention. Operations Research, 70(3), 1371–1392.

Barberis, N. (2018). Psychology-based models of asset prices and trading volume. In Handbook of behavioral economics: Applications and foundations 1 (pp. 79–175). Elsevier B.V.

Bernheim, B. D., & Sprenger, C. (2020). On the empirical validity of cumulative prospect theory: Experimental evidence of rankindependent probability weighting. Econometrica, 88(4), 1363–1409.

Blanco-Mesa, F., Merigó, J. M., & Gil-Lafuente, A. M. (2017). Fuzzy decision making: A bibliometric-based review. Journal of Intelligent & Fuzzy Systems, 32(3), 2033–2050.

Blavatskyy, P. (2006). Error propagation in the elicitation of utility and probability weighting functions. Theory and Decision, 60(2–3), 315–334.

Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free elicitation of the PWF in medical decision analysis. Management Science, 46(11), 1485–1496.

Booij, A. S., & Van de Kuilen, G. (2009). A parameter-free analysis of the utility of money for the general population under prospect theory. Journal of Economic Psychology, 30(4), 651–666.

Brandstätter, E., Kühberger, A., & Schneider, F. (2002). A cognitive-emotional account of the shape of the probability weighting function. Journal of Behavioral Decision Making, 15(2), 79–100.

Camerer, C. F., & Ho, T.-H. (1994). Violations of the betweenness axiom and nonlinearity in probability. Journal of Risk and Uncertainty, 8(2), 167–196.

Carnahan, B., Luther, H. A., & Wilkes, J. O. (1969). Applied numerical methods. Wiley New York.

Cavagnaro, D. R., Pitt, M. A., Gonzalez, R., & Myung, J. I. (2013). Discriminating among PWFs using adaptive design optimization. Journal of Risk and Uncertainty, 47(3), 255–289.

Chateauneuf, A., Eichberger, J., & Grant, S. (2007). Choice under uncertainty with the best and worst in mind: Neo-additive capacities. Journal of Economic Theory, 137(1), 538–567.

Chen, Z.-S., Zhang, X., Govindan, K., Wang, X.-J., & Chin, K.-S. (2021). Third-party reverse logistics provider selection: A computational semantic analysis-based multi-perspective multi-attribute decision-making approach. Expert Systems with Applications, 166, 114051.

Chen, Z.-S., Zhang, X., Rodriguez, R. M., Pedrycz, W., Martinez, L., & Skibniewski, M. J. (2022). Expertise-structure and risk-appetite-integrated two-tiered collective opinion generation framework for large scale group decision making. IEEE Transactions on Fuzzy Systems, 30(12), 5496–5510.

Croson, R., & Gneezy, U. (2009). Gender differences in preferences. Journal of Economic Literature, 47(2), 448–474.

Diecidue, E., Schmidt, U., & Zank, H. (2009). Parametric weighting functions. Journal of Economic Theory, 144(3), 1102–1118.

Farquhar, P. H. (1984). State of the art – Utility assessment methods. Management Science, 30(11), 1283–1300.

Gonzalez, R. (1993). Estimating the weighting function [Conference presentation]. 26th Annual Mathematical Psychology Meeting.

Gonzalez, R., & Wu, G. (1999). On the shape of the PWF. Cognitive Psychology, 38(1), 129–166.

Hershey, J. C., & Schoemaker, P. J. (1985). Probability versus certainty equivalence methods in utility measurement: Are they equivalent? Management Science, 31(10), 1213–1231.

Hong, C. S., & Waller, W. S. (1986). Empirical tests of weighted utility theory. Journal of Mathematical Psychology, 30(1), 55–72.

Huang, Y., Lin, R., & Chen, X. (2021). An enhancement EDAS method based on prospect theory. Technological and Economic Development of Economy, 27(5), 1019–1038.

Jiang, W. H., Xu, L., Chen, Z. S., Govindan, K., & Chin, K. S. (2022). Financing equilibrium in a capital constrained supply Chain: The impact of credit rating. Transportation Research Part E: Logistics and Transportation Review, 157, 102559.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.

Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39(4), 341–350.

Kilka, M., & Weber, M. (2001). What determines the shape of the PWF under uncertainty? Management Science, 47(12), 1712–1726.

Krzysztofowicz, R. (1983). Strength of preference and risk attitude in utility measurement. Organizational Behavior and Human Performance, 31(1), 88–113.

Kahneman, D., & Tversky, A. (2013). Prospect theory: An analysis of decision under risk. In World scientific handbook in financial economics series: Vol. 4. Handbook of the fundamentals of financial decision making: Part I (pp. 99–127). World Scientific.

Lattimore, P. K., Baker, J. R., & Witte, A. D. (1992). The influence of probability on risky choice: A parametric examination. Journal of Economic Behavior and Organization, 17(3), 377–400.

Luce, R. D., & Fishburn, P. C. (1991). Rank- and sign-dependent linear utility models for finite first-order gambles. Journal of Risk and Uncertainty, 4(1), 29–59.

Petrova, D. G., Pligt, J., & Garcia-Retamero, R. (2014). Feeling the numbers: On the interplay between risk, affect, and numeracy. Journal of Behavioral Decision Making, 27(3), 191–199.

Prelec, D. (1998) The Probability Weighting Function. Econometrica, 66(3), 497–527.

Rieger, M. O., Wang, M., & Hens, T. (2015). Risk preferences around the world. Management Science, 61(3), 637–648.

Roussanov, N., & Savor, P. (2014). Marriage and managers’ attitudes to risk. Management Science, 60(10), 2496–2508.

Ruggeri, K., Alí, S., Berge, M. L., Bertoldo, G., Bjørndal, L. D., Cortijos-Bernabeu, A., Davison, C., Demić, E., Esteban-Serna, C., Friedemann, M., Gibson, S. P., Jarke, H., Karakasheva, R., Khorrami, P. R., Kveder, J., Andersen, T. L., Lofthus, I. S., McGill, L., Nieto, A. E., … Folke, T. (2020). Replicating patterns of prospect theory for decision under risk. Nature Human Behaviour, 4, 622–633.

Schmidt, U., & Zank, H. (2005). What is loss aversion? Journal of Risk and Uncertainty, 30(2), 157–167.

Scholten, M., & Read, D. (2014). Prospect theory and the “forgotten” fourfold pattern of risk preferences. Journal of Risk and Uncertainty, 48(1), 67–83.

Starmer, C. (2000). Developments in non-expected utility theory: The hunt for a descriptive theory of choice under risk. Journal of Economic Literature, 38(2), 332–382.

Stewart, N., Reimers, S., & Harris, A. J. (2015). On the origin of utility, weighting, and discounting functions: How they get their shapes and how to change their shapes. Management Science, 61(3), 687–705.

Tanaka, T., Camerer, C. F., & Nguyen, Q. (2010). Risk and time preferences: Linking experimental and household survey data from Vietnam. American Economic Review, 100(1), 557–571.

Toubia, O., Johnson, E., Evgeniou, T., & Delquié, P. (2013). Dynamic experiments for estimating preferences: An adaptive method of eliciting time and risk parameters. Management Science, 59(3), 613–640.

Tversky, A., & Fox, C. R. (1995). Weighting risk and uncertainty. Psychological Review, 102(2), 269–283.

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.

Tversky, A., & Wakker, P. (1995). Risk attitudes and decision weights. Econometrica, 63(6), 1255–1280.

Van Houtven, G., Johnson, F. R., Kilambi, V., & Hauber, A. B. (2011). Eliciting benefit–risk preferences and probability-weighted utility using choice-format conjoint analysis. Medical Decision Making, 31(3), 469–480.

Van Ryzin, G., & Vulcano, G. (2015). A market discovery algorithm to estimate a general class of nonparametric choice models. Management Science, 61(2), 281–300.

Von Gaudecker, H.-M., van Soest, A., & Wenström, E. (2011). Heterogeneity in risky choice behavior in a broad population. American Economic Review, 101(2), 664–694.

Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.

Wakker, P., & Deneffe, D. (1996). Eliciting von Neumann-Morgenstern utilities when probabilities are distorted or unknown. Management Science, 42(8), 1131–1150.

Walther, M., & Munster, M. (2021). Conditional risk premiums and the value function of prospect theory. Journal of Behavioral Finance, 22(1), 74–83.

Wang, T., Li, H., Zhang, L., Zhou, X., & Huang, B. (2020). A three-way decision model based on cumulative prospect theory. Information Sciences, 519, 74–92.

Wang, T.-Y., Chen, Z.-S., He, P., Govindan, K., & Skibniewski, M. J. (2023). Alliance strategy in an online retailing supply chain: Motivation, choice, and equilibrium. Omega, 115, 102791.

Wu, G., & Gonzalez, R. (1996). Curvature of the PWF. Management Science, 42(12), 1676–1690.

Wu, G., & Gonzalez, R. (1999). Nonlinear decision weights in choice under uncertainty. Management Science, 45(1), 74–85.

Wu, S., Huang, H.-W., Li, Y.-L., Chen, H., & Pan, Y. (2021). A novel probability weighting function model with empirical studies. International Journal of Computational Intelligence Systems, 14(1), 208–227.

Yang, Q., Chen, Z. S., Chan, C. Y., Pedrycz, W., Martínez, L., & Skibniewski, M. J. (2022). Large-scale group decision-making for prioritizing engineering characteristics in quality function deployment under comparative linguistic environment. Applied Soft Computing, 127, 109359.

Yu, D., Sheng, L., & Xu, Z. (2022). Analysis of evolutionary process in intuitionistic fuzzy set theory: A dynamic perspective. Information Sciences, 601, 175–188.

Yu, D., Wang, W., Zhang, W., & Zhang, S. (2018). A bibliometric analysis of research on multiple criteria decision making. Current Science, 114(4), 747–758.