The recent ecological efficiency development in China: interactive systems of economy, society and environment

    Rui Yang Affiliation
    ; Shaomin Wu Affiliation
    ; Christina W. Y. Wong Affiliation
    ; Kaiyuan Liu Affiliation
    ; Xin Miao Affiliation
    ; Yingwen Chen Affiliation
    ; Sisi Wang Affiliation
    ; Yanhong Tang Affiliation


Ecological efficiency (EE) provides much reference for formulating appropriate regional economic, social and environmental policies to promote sustainable development. Interactive subsystems of economy, society and environment within EE system have been considered in this paper. By innovatively integrating the merits of two advanced economic research methods (global super efficiency network data envelopment analysis (GSE-NDEA) and panel vector autoregression (PVAR) and updating the EE evaluation indicator system by following the new features of sustainable development in the recent China, this paper comprehensively evaluates EE by drawing evidence from 3 regions in China during the period of 2011–2020, and further reveals how the three subsystems within EE system interact to achieve EE enhancement. The findings show EE and its three subsystems’ trend, the major constrains of EE development, the regional discrepancies in EE progress, and the interactions among the subsystems of economy-society-environment within the EE system in different regions of China. The policy implications are proposed accordingly.

First published online 15 November 2022

Keyword : ecological efficiency (EE), economy-society-environment, interactive subsystems, regional development, global super efficiency network data envelopment analysis (GSE-NDEA), panel vector autoregression (PVAR)

How to Cite
Yang, R., Wu, S., Wong, C. W. Y., Liu, K., Miao, X., Chen, Y., Wang, S., & Tang, Y. (2023). The recent ecological efficiency development in China: interactive systems of economy, society and environment. Technological and Economic Development of Economy, 29(1), 217–252.
Published in Issue
Jan 20, 2023
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Abrigo, M. R. M., & Love, I. (2016). Estimation of panel vector autoregression in stata. Stata Journal, 16(3), 778–804.

Acheampong, A. O. (2018). Economic growth, CO2 emissions and energy consumption: What causes what and where? Energy Economics, 74, 677–692.

Adler, N., & Volta, N. (2016). Accounting for externalities and disposability: A directional economic environmental distance function. European Journal of Operational Research, 250(1), 314–327.

Alsaedi, Y. H., & Tularam, G. A. (2020). The relationship between electricity consumption, peak load and GDP in Saudi Arabia: A VAR analysis. Mathematics and Computers in Simulation, 175, 164–178.

Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), 1261–1264.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

Beltrán-Esteve, M., Reig-Martínez, E., & Estruch-Guitart, V. (2017) Assessing eco-efficiency: A metafrontier directional distance function approach using life cycle analysis. Environmental Impact Assessment Review, 63, 116–127.

Berdiev, A. N., & Saunoris, J. W. (2016). Financial development and the shadow economy: A panel VAR analysis. Economic Modelling, 57, 197–207.

Bing, Z., Bi, J., Fan, Z., Yuan, Z., & Ge, J. (2008). Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecological Economics, 68(1–2), 306–316.

Bostian, M., Färe, R., Grosskopf, S., Lundgren, T., & Weber, W. L. (2018). Time substitution for environmental performance: The case of Swedish manufacturing. Empirical Economics, 54(1), 129–152.

Boussemart, J.-P., Leleu, H., Shen, Z., & Valdmanis, V. (2020). Performance analysis for three pillars of sustainability. Journal of Productivity Analysis, 53, 305–320.

BP. (2021). Statistical review of world energy.

Carrasco-Gutierrez, C. E., Souza, R. C., & Guillén, O. (2009). Selection of optimal lag length in cointegrated VAR models with weak form of common cyclical features. Brazilian Review of Econometrics, 29(1), 1–14.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2(6), 429–444.

Chen, C.-M., & Delmas, M. A. (2012). Measuring eco-inefficiency: A new frontier approach. Operations Research, 60(5), 1064–1079.

Chen, H. B., Dong, K., Wang, F. F., & Emmanuel, C. A. (2020). The spatial effect of tourism economic development on regional ecological efficiency. Environmental Science and Pollution Research, 27, 38241–38258.

Chen, X., Liu, X., Gong, Z., & Xie, J. (2021a). Three-stage super-efficiency DEA models based on the cooperative game and its application on the R&D green innovation of the Chinese high-tech industry. Computers & Industrial Engineering, 156, 107234.

Chen, Y. W., Wong, C. W. Y., Yang, R., & Miao, X. (2021b). Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China. Energy, 237, 121623.

Chen, Y. W., Yang, R., Wong, C. W., Ji, J., & Miao, X. (2022). Efficiency and productivity of air pollution control in Chinese cities. Sustainable Cities and Society, 76, 103423.

Cheng, X., Long, R., Chen, H., & Li Q. (2019). Coupling coordination degree and spatial dynamic evolution of a regional green competitiveness system: A case study from China. Ecological Indicators, 104, 489–500.

China Civil Affairs’ Statistical Yearbook. (2021). China Statistics Press.

China Energy Statistical Yearbook. (2021). China Statistics Press.

China Industry Statistical Yearbook. (2021). China Statistics Press.

China Statistical Yearbook on Science and Technology. (2021). China Statistics Press.

China Statistical Yearbook. (2021). China Statistics Press.

China Statistics Yearbook on Environment. (2021). China Statistics Press.

Choi, Y., Zhang, N., & Zhou, P. (2012). Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure. Applied Energy, 98, 198–208.

Cui, Q., & Li, Y. (2018). Airline dynamic efficiency measures with a Dynamic RAM with unified natural & managerial disposability. Energy Economics, 75, 534–546.

De Simone, L., & Popoff, F. with the WBCSD. (1997). Eco-efficiency: The business link to sustainable development. The MIT Press.

Ding, L., Lei, L., Wang, L., Zhang, L., & Calin, A. C. (2020). A novel cooperative game network DEA model for marine circular economy performance evaluation of China. Journal of Cleaner Production, 253, 120071.

Duan, X., Dai, S., Yang, R., Duan, Z., & Tang, Y. (2020). Environmental collaborative governance degree of government, corporation and public. Sustainability, 12(3), 1138.

Dyckhoff, H., & Allen, K. (2001). Measuring ecological efficiency with data envelopment analysis (DEA). European Journal of Operational Research, 132(2), 312–325.

Fan, Y., Bai, B., Qiao, Q., Kang, P., Zhang, Y., & Guo, J. (2017). Study on eco-efficiency of industrial parks in China based on data envelopment analysis. Journal of Environmental Management, 192, 107–115.

Färe, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, 34(1), 35–49.

Färe, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. The Review of Economics and Statistics, 71(1), 90–98.

Feng, N., Feng, H. H., Li, D. H., & Li, M. Q. (2020). Online media coverage, consumer engagement and movie sales: A PVAR approach. Decision Support Systems, 131, 113267.

Gharaei, A., Karimi, M., & Shekarabi, S. A. H. (2019). An integrated multi-product, multi buyer supply chain under penalty, green, and quality control polices and a vendor managed inventory with consignment stock agreement: The outer approximation with equality relaxation and augmented penalty algorithm. Applied Mathematical Modelling, 69, 223–254.

Global Carbon Project. (2021). Global Carbon Budget Report.

Golshani, H., Khoveyni, M., Valami, H. B., & Eslami, R. (2019). A slack-based super efficiency in a two-stage network structure with intermediate measures. Alexandria Engineering Journal, 58(1), 393–400.

Hampf, B. (2014). Separating environmental efficiency into production and abatement efficiency: A nonparametric model with application to US power plants. Journal of Productivity Analysis, 41(3), 457–473.

Han, Y., Geng, Z., Zhu, Q., & Qu, Y. (2015). Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry. Energy, 83, 685–695.

Hatami-Marbini, A., & Saati, S. (2020). Measuring performance with common weights: Network DEA. Neural Computing and Applications, 32(8), 3599–3617.

He, J. Q., Wang, S. J., Liu, Y. Y., Ma, H. T., & Liu, Q. Q. (2017). Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecological Indicators, 77, 185–193.

He, W., Zhang, B., & Ding, T. (2020). Sources of provincial carbon intensity reduction potential in China: A non-parametric fractional programming approach. Science of the Total Environment, 730, 139037.

Helmut, H. (2001). How to calculate and interpret ecological footprint for long periods of time: The case of Austria 1926–2995. Ecological Economics, 38(1), 25–45.

Holtz-Eakin, D., Newey, W., & Rosen, H. S. (1988). Estimating vector autoregressions with panel data. Econometrica, 56(6), 1371–1395.

Jawadi, F., Mallick, S. K., & Sousa, R. M. (2016). Fiscal and monetary policies in the BRICS: A panel VAR approach. Economic Modeling, 58, 535–542.

Jiang, Q., & Tan, Q. (2020). Can government environmental auditing improve static and dynamic ecological efficiency in China? Environmental Science and Pollution Research, 27, 21733–21746.

Jouida, S. (2018). Diversification, capital structure and profitability: A panel VAR approach. Research in International Business and Finance, 45, 243–256.

Kourtzidis, S., Matousek, R., & Tzeremes, N. G. (2021). Modelling a multi-period production process: Evidence from the Japanese regional banks. European Journal of Operational Research, 294(1), 327–339.

Kuang, B., Lu, X. H., Han, J., Fan, X. Y., & Zuo, J. (2020). How urbanization influence urban land consumption intensity: Evidence from China. Habitat International, 100, 102103.

Li, Z., Crook, J., & Andreeva, G. (2017a). Dynamic prediction of financial distress using Malmquist DEA. Expert Systems with Applications, 80, 94–106.

Li, Z., Ouyang, X., Du, K., & Zhao, Y. (2017b). Does government transparency contribute to improved eco-efficiency performance? An empirical study of 262 cities in China. Energy Policy, 110, 79–89.

Liang, H. W., Dong, L., Luo, X., Ren, J. Z., Zhang, N., Gao, Z. Q., & Dou, Y. (2016). Balancing regional industrial development: Analysis on regional disparity of China’s industrial emissions and policy implications. Journal of Cleaner Production, 126, 223–235.

Liao, K. C., Yue, M. Y., Sun, S. W., Xue, H. B., Liu, W., Tsai, S. B., & Wang, J. T. (2018). An evaluation of coupling coordination between tourism and finance. Sustainability, 10(7), 2320.

Lin, B., & Chen, X. (2020). Environmental regulation and energy-environmental performance – Empirical evidence from China’s non-ferrous metals industry. Journal of Environmental Management, 269, 110722.

Lin, B. Q., & Wang, Y. (2019). Inconsistency of economic growth and electricity consumption in China: A panel VAR approach. Journal of Cleaner Production, 229, 144–156.

Lin, B. Q., & Zhu, J. P. (2017). Energy and carbon intensity in China during the urbanization and industrialization process: A panel VAR approach. Journal of Cleaner Production, 168, 780–790.

Lin B. Q., & Zhu, J. (2019). Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China. Applied Energy, 239, 12–22.

Lin, B. Q., & Zhu, R. (2021). Energy efficiency of the mining sector in China, what are the main influence factors? Resources, Conservation and Recycling, 167, 105321.

Lin, F., Lin, S.-W., & Lu, W.-M. (2019). Dynamic eco-efficiency evaluation of the semiconductor industry: A sustainable development perspective. Environmental Monitoring and Assessment, 191(7), 435.

Liu, Q. Q., Wang, S. J., Li, B., & Zhang, W. Z. (2020). Dynamics, differences, influencing factors of eco-efficiency in China: A spatiotemporal perspective analysis. Journal of Environmental Management, 264, 110442.

Liu, Y. B., Yao, C. S., Wang, G. X., & Bao, S. M. (2011). An integrated sustainable development approach to modeling the eco-environmental effects from urbanization. Ecological Indicators, 11(6), 1599–1608.

Ma, J., Qi, L., & Deng, L. (2018). Additive centralized and Stackelberg DEA models for two-stage system with shared resources. International Transactions in Operational Research, 27(4), 2211–2229.

Mardani, A., Zavadskas, E. K., Streimikiene, D., Jusoh, A., & Khoshnoudi, M. (2017). A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renewanle and Sustainable Energy Reviews, 70, 1298–1322.

Pastor, J. T., & Lovell, C. A. K. (2005). A global Malmquist productivity index. Economics Letters, 88(2), 266–271.

Pereira, M. A., Ferreira, D. C., Figueira, J. R., & Marques, R. C. (2021). Measuring the efficiency of the Portuguese public hospitals: A value modelled network data envelopment analysis with simulation. Expert Systems with Applications, 181, 115169.

Piao, S. R., Li, J., & Ting, C. J. (2019) Assessing regional environmental efficiency in China with distinguishing weak and strong disposability of undesirable outputs. Journal of Cleaner Production, 227, 748–759.

Picazo-Tadeo, A. J., Gómez-Limón, J. A., & Reig-Martínez, E. (2011). Assessing farming eco-efficiency: A Data Envelopment Analysis approach. Journal of Environmental Management, 92(4), 1154–1164.

Qu, C., Shao, J., & Shi, Z. (2020). Does financial agglomeration promote the increase of energy efficiency in China? Energy Policy, 146, 111810.

Rashidi, K., & Saen, R. F. (2015). Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement. Energy Economics, 50, 18–26.

Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. International Journal of Life Cycle Assessment, 13, 374–388.

Ren, S., Li, X., Yuan, B., Li, D., & Chen, X. (2018). The effects of three types of environmental regulation on eco-efficiency: A cross-region analysis in China. Journal of Cleaner Production, 173, 245–255.

Roshdi, I., Hasannasab, M., Margaritis, D., & Rouse, P. (2018). Generalised weak disposability and efficiency measurement in environmental technologies. European Journal of Operational Research, 266(3), 1000–1012.

Ruggiero, J. (2005). Impact assessment of input omission on DEA. International Journal of Information Technology & Decision Making, 4(3), 359–368.

Schaltegger, S., & Sturm, A. (1990). Ecological rationality: Approaches to design of ecology-oriented management instruments. Die Unternehmung, 4, 273–290.

Shen, D. N., & Li, Y. (2020). Panel vector autoregression model to study the dynamic relationship between meteorological S&T and the economic development of meteorologically sensitive industries in China. International Journal of Electrical Engineering Education.

Shen, Y., Yue, S., Pu, Z., & Guo, M. (2020). Sustainable total-factor ecology efficiency of regions in China. Science of The Total Environment, 741, 139241.

Shen, Z. Y., Wu, H. T., Bai, K. X., & Hao, Y. (2022). Integrating economic, environmental and societal performance within the productivity measurement. Technological Forecasting & Social Change, 176, 121463.

Shermeh, H. E., Najafi, S. E., & Alavidoost, M. H. (2016). A novel fuzzy network SBM model for data envelopment analysis: A case study in Iran regional power companies. Energy, 112, 686–697.

Song, M., Tan, K., Wang, J., & Shen, Z. (2022). Modeling and evaluating economic and ecological operation efficiency of smart city pilots. Cities, 124, 103575.

Statistical Communique on the National Economic and Social Development. (2021). Retrieved October 27, 2022, from

Sueyoshi, T. (2000). Stochastic DEA for restructure strategy: An application to a Japanese petroleum company. Omega, 28(4), 385–398.

Sueyoshi, T., & Yuan, Y. (2017). Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention. Energy Economics, 66, 154–166.

Sun, J., Li, G., & Wang, Z. (2019). Technology heterogeneity and efficiency of China’s circular economic systems: A game meta-frontier DEA approach. Resources, Conservation and Recycling, 146, 337–347.

Sun, X. X., & Loh, L. (2019). Sustainability governance in China: An analysis of regional ecological efficiency. Sustainability, 11(7), 1958, 11071958.

Tang, Y. H., Yang, R., Chen, Y. W., & Miao, X. (2022). Assessment of China’s green governance performance based on integrative perspective of technology utilization and actor management. International Journal of Sustainable Development & World Ecology, 29(8), 827–839.

Teng, J. Y., & Wu, X. G. (2014). Eco-footprint-based life-cycle eco-efficiency assessment of building projects. Ecological Indicators, 39, 160–168.

Tian, X. L., Guo, Q. G., Han, C., & Ahmad, N. (2016). Different extent of environmental information disclosure across Chinese cities: Contributing factors and correlation with local pollution. Global Environmental Change, 39, 244–257.

Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197(1), 243–252.

Vaezi, E., Najafi, S. E., Hajimolana, S. M., Lotfi, F. H., & Namin, M. A. (2021). Efficiency evaluation of a three-stage leader-follower model by the data envelopment analysis with double-frontier viewpoint. Scientia Iranica, 28(1), 492–515.

Walsh, P. P., Murphy, E., & Horan, D. (2020). The role of science, technology and innovation in the UN 2030 agenda. Technological Forecasting and Social Change, 154, 119957.

Wang, J., Wei, X., & Guo, Q. (2018b). A three-dimensional evaluation model for regional carrying capacity of ecological environment to social economic development: Model development and a case study in China. Ecological Indicators, 89, 348–355.

Wang, K., Wei, Y. M., & Huang, Z. (2018a). Environmental efficiency and abatement efficiency measurements of China’s thermal power industry: A data envelopment analysis based materials balance approach. European Journal of Operational Research, 269(1), 35–50.

Wang, M., & Feng, C. (2020). Regional total-factor productivity and environmental governance efficiency of China’s industrial sectors: A two-stage network-based super DEA approach. Journal of Cleaner Production, 273, 123110.

Wang, Q., Tang, J., & Choi, G. (2021a). A two-stage eco-efficiency evaluation of China’s industrial sectors: A dynamic network data envelopment analysis (DNDEA) approach. Process Safety and Environmental Protection, 148, 879–892.

Wang, S. J., Hua, G. H., & Yang, L. Z. (2020). Coordinated development of economic growth and ecological efficiency in Jiangsu, China. Environmental Science and Pollution Research, 27, 36664–36676.

Wang, S. H., Sun, X. L., & Song, M. L. (2021b). Environmental regulation, resource misallocation, and ecological efficiency. Emerging Markets Finance and Trade, 57(3), 410–429.

Wang, Y., & Chen, X. Y. (2020). Natural resource endowment and ecological efficiency in China: Revisiting resource curse in the context of ecological efficiency. Resources Policy, 66, 101610.

Wang, Z., & He, W. (2017). CO2 emissions efficiency and marginal abatement costs of the regional transportation sectors in China. Transportation Research Part D: Transport and Environment, 50, 83–97.

Wendling, Z. A., Emerson, J. W., Esty, D. C., Levy, M. A., de Sherbinin, A., et al. (2018). 2018 Environmental Performance Index. Yale Center for Environmental Law & Policy.

Wu, H. T., Li, Y. W., Hao, Y., Ren, S. Y., & Zhang, P. F. (2020). Environmental decentralization, local government competition, and regional green development: Evidence from China. Science of The Total Environment, 708, 135085.

Wu, J., Wu, Z., & Hollaender, R. (2012). The application of Positive Matrix Factorization (PMF) to eco-efficiency analysis. Journal of Environmental Management, 98, 11–14.

Xia, Y., Wang, X., Li, H., & Li, A. (2020). China’s provincial environmental efficiency evaluation and influencing factors of the mining industry considering technology heterogeneity. IEEE Acess, 8, 178924–178937.

Xing, Z. C., Wang, J. G., & Zhang, J. (2018). Expansion of environmental impact assessment for eco-efficiency evaluation of China’s economic sectors: An economic input-output based frontier approach. Science of the Total Environment, 635, 284–293.

Xu, M. X., & Hu, W. Q. (2020). A research on coordination between economy, society and environment in China: A case study of Jiangsu. Journal of Cleaner Production, 258, 120641.

Xu, Y., Zhang, H., Cheng, K., Zhang, Z., & Chen, Y. (2021). Efficiency measurement in multi-period network DEA model with feedback. Expert Systems with Applications, 175, 114815.

Xue, Y., Tang, C., Wu, H. T., Liu, J., & Hao, Y. (2022). The emerging driving force of energy consumption in China: Does digital economy development matter? Energy Policy, 165, 112997.

Yang, L., & Yang, Y. (2019). Evaluation of eco-efficiency in China from 1978 to 2016: Based on a modified ecological footprint model. Science of the Total Environment, 662, 581–590.

Yang, R., Wong, C. W. Y., & Miao, X. (2021a). Evaluation of the coordinated development of economic, urbanization and environmental systems: A case study of China. Clean Technologies and Environmental Policy, 23, 685–708.

Yang R., Wong, C. W. Y., Wang, T., Du, M. J., & Miao, X. (2021b). Assessment on the interaction between technology innovation and eco-environmental systems in China. Environmental Science and Pollution Research, 28(44), 63127–63149.

Yao, J. D., Xu, P. P., & Huang, Z. J. (2021). Impact of urbanization on ecological efficiency in China: An empirical analysis based on provincial panel data. Ecological Indicators, 129, 107827.

Yu, S., Liu, J., & Li, L. (2019a). Evaluating provincial eco-efficiency in China: An improved network data envelopment analysis model with undesirable output. Environmental Science and Pollution Research, 27, 6886–6903.

Yu, Y., Chong, P., & Li, Y. (2019b). Do neighboring prefectures matter in promoting eco-efficiency? Empirical evidence from China. Technological Forecasting and Social Change, 144, 456–465.

Yue, H., Lin, L., & Yantuan, Y. (2018a). Do urban agglomerations outperform non-agglomerations? A new perspective on exploring the eco-efficiency of Yangtze River Economic Belt in China. Journal of Cleaner Production, 202, 1056–1067.

Yue, H., Lin, L., & Yu, Y. (2018b). Does urban cluster promote the increase of urban eco-efficiency? Evidence from Chinese cities. Journal of Cleaner Production, 197, 957–971.

Zameer, H., Yasmeen, H., Wang, R., Tao, J., & Malik, M. N. (2020). An empirical investigation of the coordinated development of natural resources, financial development and ecological efficiency in China. Resources Policy, 65, 101580.

Zhan, C., & De Jong, M. (2018). Financing eco-cities and low carbon cities: The case of Shenzhen International Low Carbon City. Journal of Cleaner Production, 180, 116–125.

Zhang, X., Wang, G. S., & Wang, Y. W. (2014). Spatial-temporal differences of provincial eco-efficiency in China based on matrix-type network DEA. Economic Geography, 12, 153–160.

Zhang, Y.-J., Liu, J.-Y., & Su, B. (2020). Carbon congestion effects in China’s industry: Evidence from provincial and sectoral levels. Energy Economics, 86, 104635.

Zhong, R., & Zeng, J. (2022). The impact of digital economy on household consumption – Empirical analysis based on the Spatial Durbin Model. Inquiry into Economic Issues, 3, 31–43 (in Chinese).

Zhou, C., Shi, C., Wang, S., & Zhang, G. (2018). Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecological Indicators, 86, 67–80.

Zhou, P., Poh, K. L., & Ang, B. W. (2007). A non-radial DEA approach to measuring environmental performance. European Journal of Operational Research, 178(1), 1–9.