Share:


Economic, environmental, and social dimensions of farming sustainability – trade-off or synergy?

    Aleksander Grzelak   Affiliation
    ; Michał Borychowski   Affiliation
    ; Jakub Staniszewski   Affiliation

Abstract

Prior studies on the relationships between economic, environmental, and social dimensions of activity on agricultural holdings has yielded inconclusive results. This study examines the interactions between these spheres, with the aim of determining what the relationships between them might be. The study was based on the results of surveys of 120 farms in the Wielkopolska region of Poland, using structural equation modeling. The results showed significant and positive relationships between the economic, social, and environmental dimensions that could create synergies between them. The strongest positive relationships existed between the economic and environmental dimensions. Thus, economic and environmental development can be stimulated simultaneously. Analyzed farms from the Wielkopolska region positively discount the existing support system in the EU to the complementarity between environmental and economic governance. Our research indicates the need for the EU to implement a strategy adjusted to the individual region’s peculiarities in terms of environmental and social policies in rural areas.


First published online 04 March 2022

Keyword : sustainability, economic, environmental, social dimensions, agricultural holdings, trade-off, structural equation modelling

How to Cite
Grzelak, A., Borychowski, M., & Staniszewski, J. (2022). Economic, environmental, and social dimensions of farming sustainability – trade-off or synergy?. Technological and Economic Development of Economy, 28(3), 655–675. https://doi.org/10.3846/tede.2022.16463
Published in Issue
Apr 21, 2022
Abstract Views
172
PDF Downloads
187
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Anghel, I., Siminica, M., Cristea, M., Noja, G. G., & Sichigea, M. (2019). Bioeconomy credentials and intellectual capital: A comparative modeling approach for the E.U.-13 and E.U.-15. Economic Research-Ekonomska Istraživanja, 32(1), 2699–2722. https://doi.org/10.1080/1331677X.2019.1653212

Beltrán-Esteve, M., & Picazo-Tadeo, A. J. (2017). Assessing environmental performance in the European Union: Eco-innovation versus catch-ing-up. Energy Policy, 104, 240–252. https://doi.org/10.1016/j.enpol.2017.01.054

Beltrán-Esteve, M., Giménez, V., & Picazo-Tadeo, A. J. (2019). Environmental productivity in the European Union: A global Luen-berger-metafrontier approach. Science of Total Environment, 692, 136–146. https://doi.org/10.1016/j.scitotenv.2019.07.182

Bolwig, S., Gibbon, P., & Jones, S. (2009). The economics of smallholder organic contract farming in Tropical Africa. World Development, 37(6), 1094–1104. https://doi.org/10.1016/j.worlddev.2008.09.012

Bonfiglio, A., Arzeni, A., & Bodini, A. (2017). Assessing eco-efficiency of arable farms in rural areas. Agricultural Systems, 151, 114–125. https://doi.org/10.1016/j.agsy.2016.11.008

Briner, S., Huber, R., Bebi, P., Elkin, C., Schmatz, D. R., & Grêt-Regamey, A. (2013). Trade-Offs between ecosystem services in a mountain region. Ecology and Society, 18(3), 35. https://doi.org/10.5751/ES-05576-180335

Brown, T. A. (2015). Confirmatory factor analysis for applied research. The Guilford Press.

Brown, T. A., & Moore, M. T. (2012). Confirmatory factor analysis. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 361–379). The Guilford Press.

Calzadilla, A., Rehdanz, K., & Tol, R. S. (2010). The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis. Journal of Hydrology, 384(3–4), 292–305. https://doi.org/10.1016/j.jhydrol.2009.12.012

Cristea, M., Noja, G., Marcu, N., Siminica, M., & Tirca, D. (2020). Modelling EU bioeconomy credentials in the economic development framework: The role of intellectual capital. Technological and Economic Development of Economy, 26(6), 1139–1164. https://doi.org/10.3846/tede.2020.13159

Czyżewski, B., & Majchrzak, A. (2018). Market versus agriculture in Poland – macroeconomic relations of incomes, prices and productivity in terms of the sustainable development paradigm. Technological and Economic Development of Economy, 24(2), 318–334. https://doi.org/10.3846/20294913.2016.1212743

Czyżewski, B., Matuszczak, A., Grzelak, A., Guth, M., & Majchrzak, A. (2020). Environmental sustainable value in agriculture revisited: How does Common Agricultural Policy contribute to eco-efficiency? Sustainability Science, 16, 137–152. https://doi.org/10.1007/s11625-020-00834-6

Daccache, A., Ciurana, J. S., Rodriguez Diaz, J. A., & Knox, J. W. (2014). Water and energy footprint of irrigated agriculture in the Mediterranean region. Environmental Research Letters, 9(12), 124014. https://doi.org/10.1088/1748-9326/9/12/124014

Eigenbrod, F., Anderson, B. J., Armsworth, P. R., Heinemeyer, A., Jackson, S. F., Parnell, M., Thomas, C. D., & Gaston, K. J. (2009). Ecosystem service benefits of contrasting conservation strategies in a human-dominated region. Proceedings of the Royal Society B: Biological Sciences, 276(1669), 2903–2911. https://doi.org/10.1098/rspb.2009.0528

Engel, E. (1857). Die Productions- und Consumtionsverhältnisse des Königreichs Sachsens. Zeitschrift des statistischen Bureaus des Königlich Sächsischen Ministerium des Innern, 8–9, 28–29.

Food and Agriculture Organization of the United Nations. (2013). SAFA Sustainability Assessment of Food and Agriculture systems indicators. Retrieved June 21, 2020, from http://www.fao.org/fileadmin/templates/nr/sustainability_pathways/docs/SAFA_Indicators_final_19122013.pdf

Galdeano-Gómez, E., Aznar-Sánchez, J. A., Pérez-Mesa, J. C., & Piedra-Muñoz, L. (2017). Exploring synergies among agricultural sustainability dimensions: An empirical study on farming system in Almería (Southeast Spain). Ecological Economics, 140, 99–109. https://doi.org/10.1016/j.ecolecon.2017.05.001

Gao, L., & Bryan, B. A. (2017). Finding pathways to national-scale land-sector sustainability. Nature, 544, 217–222. https://doi.org/10.1038/nature21694

Garson, G. D. (2015). Structural equation modeling. Statistical Associates “Blue Book” Series. Statistical Associates Publishing.

Gobattoni, F., Pelorosso, R., Leone, A., & Ripa, M. N. (2015). Sustainable rural development: The role of traditional activities in Central Italy. Land Use Policy, 48, 412–427. https://doi.org/10.1016/j.landusepol.2015.06.013

Gómez-Limon, J. A., & Sanchez-Fernandez, G. (2010). Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics, 69(5), 1062–1075. https://doi.org/10.1016/j.ecolecon.2009.11.027

Grzelak, A. (2016). The problem of complexity in economics on the example of the agricultural sector. Agricultural Economics – Czech, 61(12), 577–586. https://doi.org/10.17221/236/2014-AGRICECON

Hadrich, J. C., & Olson, F. (2011). Joint measurement of farm size and farm performance: A confirmatory factor analysis. Agricultural Finance Review, 71(3), 295–309. https://doi.org/10.1108/00021461111177585

Haileslassie, A., Craufurd, P., Thiagarajah, R., Kumar, S., Whitbread, A., Rathor, A., Blummel, M., Ericsson, P., & Kakumanu, K. R. (2016). Empirical evaluation of sustainability of divergent farms in the dryland farming systems of India. Ecological Indicators, 60, 710–723. https://doi.org/10.1016/j.ecolind.2015.08.014

Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modeling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53–60.

Iacobucci, D. (2010). Structural equations modeling: Fit indices, sample size, and advanced topics. Journal of Consumer Psychology, 20(1), 90–98. https://doi.org/10.1016/j.jcps.2009.09.003

Jaklič, T., Juvančič, L., Kavčič, S., & Debeljak, M. (2014). Complementarity of socio-economic and emergy evaluation of agricultural production systems: The case of Slovenian dairy sector. Ecological Economics, 107, 469–481. https://doi.org/10.1016/j.ecolecon.2014.09.024

Jan, P., Dux, D., Lips, M., Alig, M., & Dumondel, M. (2012). On the link between economic and environmental performance of Swiss dairy farms of the alpine area. The International Journal of Life Cycle Assessment, 17, 706–719. https://doi.org/10.1007/s11367-012-0405-z

Jouan, J., Ridier, A., & Carof, M. (2020). SYNERGY: A regional bio-economic model analyzing farm-to-farm exchanges and legume production to enhance agricultural sustainability. Ecological Economics, 175, 106688. https://doi.org/10.1016/j.ecolecon.2020.106688

Kanter, D. R., Musumba, M., Wood, S. L. R., Palm, C., Antle, J., Balvanera, P., Dale V. H., Havlik P., Kline, K. L., Scholes, R. J., Thornton, P., Tittonell, P., & Andelman, S. (2018). Evaluating agricultural trade-offs in the age of sustainable development. Agricultural Systems, 163, 73–88. https://doi.org/10.1016/j.agsy.2016.09.010

Kebede, A. S., Nicholls, R. J., Clarke, D., Savin, C., & Harrison, P. A. (2021). Integrated assessment of the food-water-land-ecosystems nexus in Europe: Implications for sustainability. Science of the Total Environment, 768, 144461. https://doi.org/10.1016/j.scitotenv.2020.144461

Kline, R. B. (2011). Principles and practice of structural equation modelling (3rd ed.). The Guilford Press.

Lemaire, G., Franzluebbers, A., Carvalho, P. C., & Dedieu, B. (2014). Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems & Environment, 190, 4–8. https://doi.org/10.1016/j.agee.2013.08.009

Li, T., Lü, Y., Fu, B., Comber, A. J., Harris, P., & Wu, L. (2017). Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: Their effectiveness and socio-economic relationships. Science of Total Environment, 607–608, 911–919. https://doi.org/10.1016/j.scitotenv.2017.07.044

Martínez-Sastre, R., Miñarroa, M., & García, D. (2020). Animal biodiversity in cider apple orchards: Simultaneous environmental drivers and effects on insectivory and pollination. Agriculture, Ecosysyems and Environment, 295, 106918. https://doi.org/10.1016/j.agee.2020.106918

Meul, M., Van Passel, S., Nevens, F., Dessein, J., Rogge, E., Mulier, A., & Van Hauwermeiren, A. (2008). MOTIFS: A monitoring tool for inte-grated farm sustainability. Agronomy for Sustainable Development, 28(2), 321–332. https://doi.org/10.1051/agro:2008001

Meyfroidt, P., Abeygunawardane, D., Ramankutty, N., Thomson, A., & Zeleke, G. (2019). Interactions between land systems and food systems. Current Opinion in Environmental Sustainability, 38, 60–67. https://doi.org/10.1016/j.cosust.2019.04.010

Nicholson, C. C., Emery, B. F., & Niles, M. T. (2021). Global relationships between crop diversity and nutritional stability. Nature Communications, 12, 5310. https://doi.org/10.1038/s41467-021-25615-2

Niewęgłowski, M., Gugała, M., Włodarczyk, B., & Sikorska, A. (2018). Ecological evaluation of sustainable development in the studied farms of Przysucha county. Ecological Engineering, 19(6), 146–152. https://doi.org/10.12911/22998993/91877

OECD. (2008). Handbook on constructing composite indicators: Methodology and user guide. OECD Publications. https://doi.org/10.1787/9789264043466-en

Parry, S. (2020). Fit Statistics commonly reported for CFA and SEM. Cornell University, Cornell Statistical Consulting Unit. https://dokumen.tips/documents/fit-statistics-commonly-reported-for-cfa-and-sem-parry-kline-suggests-that-at-a.html

Paut, R., Sabatier, R., & Tchamitchian, M. (2020). Modeling crop diversification and association effects in agricultural systems. Agriculture, Ecosystems & Environment, 288, 106711. https://doi.org/10.1016/j.agee.2019.106711

Picazo-Tadeo, A., Gomez-Limon, J., & Reig-Martínez, E. (2011). Assessing farming eco-efficiency: A data envelopment analysis approach. Journal of Environmental Management, 92(4), 1154–1164. https://doi.org/10.1016/j.jenvman.2010.11.025

Power, A. G. (2010). Ecosystem services and agriculture: Tradeoffs and synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2959–2971. https://doi.org/10.1098/rstb.2010.0143

Reddy, A. A., Rani, C. R., Cadman, T., Kumar, S. N., & Reddy, A. N. (2016). Towards sustainable indicators of food and nutritional outcomes in India. World Journal of Science, Technology and Susatinable, 13(2), 128–142. https://doi.org/10.1108/WJSTSD-10-2015-0049

Reig-Martínez, E., Gómez-Limón, J. A., & Picazo-Tadeo, A. J. (2011). Ranking farms with a composite indicator of sustainability. Agricultural Economics-Blackwell, 42(5), 561–575. https://doi.org/10.1111/j.1574-0862.2011.00536.x

Ripoll-Bosch, R., Díez-Unquera, B., Ruiz, R., Villalba, D., Molina, E., Joy, M., Olaizola, A., & Bernués, A. (2012). An integrated sustainability assessment of Mediterranean sheep farms with different degrees of intensification. Agricultural Systems, 105(1), 46–56. https://doi.org/10.1016/j.agsy.2011.10.003

Rogall, H. (2004). Ökonomie der Nachhaltigkeit. Handlungsfelder für Politik und Wirtschaft. VS Verlag für Sozialwissenschaften. https://doi.org/10.1007/978-3-322-81029-8

Sarkar, A., Azim, J. A., Al Asif, A., Qian, L., & Peau, A. K. (2021). Structural equation modeling for indicators of sustainable agriculture: Prospective of a developing country’s agriculture. Land Use Policy, 109, 105638. https://doi.org/10.1016/j.landusepol.2021.105638

Schaak, H., & Mußhoff, O. (2018). Understanding the adoption of grazing practices in German dairy farming. Agricultural Systems, 165, 230–239. https://doi.org/10.1016/j.agsy.2018.06.015

Shi, Y., Pinsard, C., & Accatino, F. (2021). Land sharing strategies for addressing the trade-off between carbon storage and crop production in France. Regional Environmental Change, 21, 92. https://doi.org/10.1007/s10113-021-01818-7

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, Ch., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., & Towprayoon, S. (2007). Policy and tech-nological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems & Environment, 118(1–4), 6–28. https://doi.org/10.1016/j.agee.2006.06.006

Solazzo, R., & Pierangeli, F. (2016). How does greening affect farm behavior? Trade-off between commitments and sanctions in the Northern Italy. Agricultural Systems, 149, 88–98. https://doi.org/10.1016/j.agsy.2016.07.013

StataCorp. (2017). Stata: Release 15. Statistical Software. StataCorp LLC, College Station, TX.

Stoate, C., Báldi, A., Beja, P., Boatman, N. D., Herzon, I., Van Doorn, A., de Snoo, G. R., Rakosy, L. & Ramwell, C. (2009). Ecological impacts of early 21st century agricultural change in Europe – a review. Journal of Environmental Management, 91(1), 22–46. https://doi.org/10.1016/j.jenvman.2009.07.005

Sulewski, P., & Kłoczko-Gajewska, A. (2018). Development of the sustainability index of farms based on surveys and FADN sample. Problems of Agricultural Economics, 356(3), 32–56. https://doi.org/10.30858/zer/94474

Sulewski, P., Kłoczko-Gajewska, A., & Sroka, W. (2018). Relations between agri-environmental, economic and social dimensions of farms’ sus-tainability. Sustainability, 10(12), 4629. https://doi.org/10.3390/su10124629

Tomarken, A. J., & Waller, N. G. (2005). Structural equation modeling: Strengths, limitations, and misconceptions. Annual Review of Clinical Psychology, 1, 31–65. https://doi.org/10.1146/annurev.clinpsy.1.102803.144239

Van Grinsven, H., Van Eerdt, M., Westhoek, H., & Kruitwagen, S. (2019). Benchmarking eco-Efficiency and footprints of Dutch agriculture in European context and implications for policies for climate and environment. Frontiers in Sustainable Food Systems, 3, 13. https://doi.org/10.3389/fsufs.2019.00013

Wrzaszcz, W. (2018). Changes in farms’ environmental sustainability in Poland – progress or regress? AgBioForum, 2(21), 107–126.

Zahm, F., Viaux, P., Vilain, L., Girardin, P., & Mouchet, C. (2008). Assessing farm sustainability with the IDEA method – from the concept of agriculture sustainability to case studies on farms. Sustainable Development, 16(4), 271–281. https://doi.org/10.1002/sd.380