On the ratio of fuzzy numbers – exact membership function computation and applications to decision making
Abstract
In the present paper, we propose a new approach to solving the full fuzzy linear fractional programming problem. By this approach, we provide a tool for making good decisions in certain problems in which the goals may be modelled by linear fractional functions under linear constraints; and when only vague data are available. In order to evaluate the membership function of the fractional objective, we use the α-cut interval of a special class of fuzzy numbers, namely the fuzzy numbers obtained as sums of products of triangular fuzzy numbers with positive support. We derive the α-cut interval of the ratio of such fuzzy numbers, compute the exact membership function of the ratio, and introduce a way to evaluate the error that arises when the result is approximated by a triangular fuzzy number. We analyse the effect of this approximation on solving a full fuzzy linear fractional programming problem. We illustrate our approach by solving a special example – a decision-making problem in production planning.
Keywords:
full fuzzy program, triangular fuzzy number, fuzzy aggregation, linear fractional programming, error approximation, decision makingHow to Cite
Share
License
Copyright (c) 2015 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2015 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.