Share:


Prediction of simulated factory layout throughput using artificial intelligence

    Patrick Eschemann Affiliation
    ; Astrid Nieße Affiliation
    ; Jürgen Sauer Affiliation

Abstract

The use of artificial neural networks for the optimisation of factory layouts is not a common practice, primarily due to the challenge of collecting sufficient layout data to form datasets for artificial intelligence (AI) model training. This paper presents a supervised learning method derived from a PhD thesis that employs neural networks to assess factory layouts. The training data is generated using a random layout algorithm, which is capable of producing numerous layouts. These layouts are then labeled through a discrete event simulation. The combination of layouts and simulation metrics serves as the training basis for the neural network. The AI framework integrates a convolutional neural network with a multilayer perceptron, which is capable of handling both tabular and image data. Ultimately, this allows us to calculate of the simulated throughput.


First published online 20 January 2025

Keyword : discrete simulation, AI-supported simulation, neural network, transportation, decision support systems

How to Cite
Eschemann, P., Nieße, A., & Sauer, J. (2024). Prediction of simulated factory layout throughput using artificial intelligence. New Trends in Computer Sciences, 2(2), 101–116. https://doi.org/10.3846/ntcs.2024.22160
Published in Issue
Dec 31, 2024
Abstract Views
7
PDF Downloads
6
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Azimi, P., & Soofi, P. (2017). An ANN-based optimization model for facility layout problem using simulation technique. Scientia Iranica, 24(1), 364–377. https://doi.org/10.24200/sci.2017.4040

Ball, R., & Tunger, D. (2005). Bibliometrische Analysen-Daten, Fakten und Methoden-Grundwissen Bibliometrie für Wissenschaftler, Wissenschaftsmanager, Forschungseinrichtungen und Hochschulen (Bd. 12). Forschungszentrum Jülich.

Bochmann, L. S. (2018). Entwicklung und Bewertung eines flexiblen und dezentral gesteuerten Fertigungssystems für variantenreiche Produkte [PhD Thesis]. ETH Zurich.

Brocke, J. vom, Simons, A., Niehaves, B., Niehaves, B., Reimer, K., Plattfaut, R., & Cleven, A. (2009). Reconstructing the giant: On the importance of rigour in documenting the literature search process. In ECIS 2009 Proceedings. 161. https://aisel.aisnet.org/ecis2009/161

Burggraef, P., Wagner, J., & Heinbach, B. (2021). Bibliometric study on the use of machine learning as resolution technique for facility layout problems. IEEE Access, 9, 22569–22586. https://doi.org/10.1109/ACCESS.2021.3054563

Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255–267. https://doi.org/10.1016/j.arcontrol.2007.04.001

Eschemann, P., Krauskopf, J. E., Sauer, J., & Zernickel, J. S. (2021). Optimizing factory layouts with supervised genetic algorithm. In Modelling and Simulation 2021 – The European Simulation and Modelling Conference, ESM 2021 (pp. 49–56).

Eschemann, P., Nieße, A., & Sauer, J. (2024). Determining throughput of factory layouts with neural networks. In Industrial Simulation Conference, ISC 2024.

García-Hernández, L., Pérez-Ortiz, M., Arauzo-Azofra, A., Salas-Morera, L., & Hervás-Martínez, C. (2014). An evolutionary neural system for incorporating expert knowledge into the UA-FLP. Neurocomputing, 135, 69–78. https://doi.org/10.1016/j.neucom.2013.01.068

Garcia-Hernandez, L., Salas-Morera, L., Pierreval, H., & Arauzo-Azofra, A. (2018). A novel hybrid multi-criteria decision-making model to solve UA-FLP. In International Symposium on Distributed Computing and Artificial Intelligence (pp. 292–299). https://doi.org/10.1007/978-3-319-94649-8_35

Hosseini-Nasab, H., Fereidouni, S., Ghomi, S. M. T. F., & Fakhrzad, M. B. (2018). Classification of facility layout problems: A review study. The International Journal of Advanced Manufacturing Technology, 94(1–4), 957–977. https://doi.org/10.1007/s00170-017-0895-8

Hou, Y., Yano, K., Suga, N., Webber, J., Nii, E., Higashimori, T., Denno, S., & Suzuki, Y. (2022). A study of throughput prediction using convolutional neural network over factory environment. In 2022 24th International Conference on Advanced Communication Technology (ICACT) (pp. 429–434). https://doi.org/10.23919/ICACT53585.2022.9728893

Ikeda, H., Nakagawa, H., & Tsuchiya, T. (2022). Towards automatic facility layout design using reinforcement learning. Annals of Computer Science and Information Systems, 32, 11–20. https://doi.org/10.15439/2022F25

Jaber, A. Q., Hidehiko, Y., & Ramli, R. (2007). Machine learning in production systems design using genetic algorithms. International Journal of Computational Intelligence, 4(1).

Klar, M., Ruediger, P., Schuermann, M., Gören, G. T., Glatt, M., Ravani, B., & Aurich, J. C. (2024). Explainable generative design in manufacturing for reinforcement learning based factory layout planning. Journal of Manufacturing Systems, 72, 74–92. https://doi.org/10.1016/j.jmsy.2023.11.012

Rummukainen, H., Nurminen, J. K., Syrjänen, T., & Numminen, J.-P. (2018). Machine learning from prior designs for facility layout optimization.

Sun, C., Shrivastava, A., Singh, S., & Gupta, A. (2017). Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of the IEEE International Conference on Computer Vision (pp. 843–852). https://doi.org/10.1109/ICCV.2017.97

Tam, C., & Tong, T. K. (2003). GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction. Construction Management and Economics, 21(3), 257–266. https://doi.org/10.1080/0144619032000049665

Tsuchiya, K., Bharitkar, S., & Takefuji, Y. (1996). A neural network approach to facility layout problems. European Journal of Operational Research, 89(3), 556–563. https://doi.org/10.1016/0377-2217(95)00051-8