Prediction of simulated factory layout throughput using artificial intelligence

    Patrick Eschemann Info
    Astrid Nieße Info
    Jürgen Sauer Info

Abstract

The use of artificial neural networks for the optimisation of factory layouts is not a common practice, primarily due to the challenge of collecting sufficient layout data to form datasets for artificial intelligence (AI) model training. This paper presents a supervised learning method derived from a PhD thesis that employs neural networks to assess factory layouts. The training data is generated using a random layout algorithm, which is capable of producing numerous layouts. These layouts are then labeled through a discrete event simulation. The combination of layouts and simulation metrics serves as the training basis for the neural network. The AI framework integrates a convolutional neural network with a multilayer perceptron, which is capable of handling both tabular and image data. Ultimately, this allows us to calculate of the simulated throughput.

First published online 20 January 2025

Keywords:

discrete simulation, AI-supported simulation, neural network, transportation, decision support systems

How to Cite

Eschemann, P., Nieße, A., & Sauer, J. (2024). Prediction of simulated factory layout throughput using artificial intelligence. New Trends in Computer Sciences, 2(2), 101–116. https://doi.org/10.3846/ntcs.2024.22160

Share

Published in Issue
December 31, 2024
Abstract Views
158

References

Azimi, P., & Soofi, P. (2017). An ANN-based optimization model for facility layout problem using simulation technique. Scientia Iranica, 24(1), 364–377. https://doi.org/10.24200/sci.2017.4040> https://doi.org/10.24200/sci.2017.4040

Ball, R., & Tunger, D. (2005). Bibliometrische Analysen-Daten, Fakten und Methoden-Grundwissen Bibliometrie für Wissenschaftler, Wissenschaftsmanager, Forschungseinrichtungen und Hochschulen (Bd. 12). Forschungszentrum Jülich.

Bochmann, L. S. (2018). Entwicklung und Bewertung eines flexiblen und dezentral gesteuerten Fertigungssystems für variantenreiche Produkte [PhD Thesis]. ETH Zurich.

Brocke, J. vom, Simons, A., Niehaves, B., Niehaves, B., Reimer, K., Plattfaut, R., & Cleven, A. (2009). Reconstructing the giant: On the importance of rigour in documenting the literature search process. In ECIS 2009 Proceedings. 161. https://aisel.aisnet.org/ecis2009/161> https://aisel.aisnet.org/ecis2009/161

Burggraef, P., Wagner, J., & Heinbach, B. (2021). Bibliometric study on the use of machine learning as resolution technique for facility layout problems. IEEE Access, 9, 22569–22586. https://doi.org/10.1109/ACCESS.2021.3054563> https://doi.org/10.1109/ACCESS.2021.3054563

Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255–267. https://doi.org/10.1016/j.arcontrol.2007.04.001> https://doi.org/10.1016/j.arcontrol.2007.04.001

Eschemann, P., Krauskopf, J. E., Sauer, J., & Zernickel, J. S. (2021). Optimizing factory layouts with supervised genetic algorithm. In Modelling and Simulation 2021 – The European Simulation and Modelling Conference, ESM 2021 (pp. 49–56).

Eschemann, P., Nieße, A., & Sauer, J. (2024). Determining throughput of factory layouts with neural networks. In Industrial Simulation Conference, ISC 2024.

García-Hernández, L., Pérez-Ortiz, M., Arauzo-Azofra, A., Salas-Morera, L., & Hervás-Martínez, C. (2014). An evolutionary neural system for incorporating expert knowledge into the UA-FLP. Neurocomputing, 135, 69–78. https://doi.org/10.1016/j.neucom.2013.01.068> https://doi.org/10.1016/j.neucom.2013.01.068

Garcia-Hernandez, L., Salas-Morera, L., Pierreval, H., & Arauzo-Azofra, A. (2018). A novel hybrid multi-criteria decision-making model to solve UA-FLP. In International Symposium on Distributed Computing and Artificial Intelligence (pp. 292–299). https://doi.org/10.1007/978-3-319-94649-8_35> https://doi.org/10.1007/978-3-319-94649-8_35

Hosseini-Nasab, H., Fereidouni, S., Ghomi, S. M. T. F., & Fakhrzad, M. B. (2018). Classification of facility layout problems: A review study. The International Journal of Advanced Manufacturing Technology, 94(1–4), 957–977. https://doi.org/10.1007/s00170-017-0895-8> https://doi.org/10.1007/s00170-017-0895-8

Hou, Y., Yano, K., Suga, N., Webber, J., Nii, E., Higashimori, T., Denno, S., & Suzuki, Y. (2022). A study of throughput prediction using convolutional neural network over factory environment. In 2022 24th International Conference on Advanced Communication Technology (ICACT) (pp. 429–434). https://doi.org/10.23919/ICACT53585.2022.9728893> https://doi.org/10.23919/ICACT53585.2022.9728893

Ikeda, H., Nakagawa, H., & Tsuchiya, T. (2022). Towards automatic facility layout design using reinforcement learning. Annals of Computer Science and Information Systems, 32, 11–20. https://doi.org/10.15439/2022F25> https://doi.org/10.15439/2022F25

Jaber, A. Q., Hidehiko, Y., & Ramli, R. (2007). Machine learning in production systems design using genetic algorithms. International Journal of Computational Intelligence, 4(1).

Klar, M., Ruediger, P., Schuermann, M., Gören, G. T., Glatt, M., Ravani, B., & Aurich, J. C. (2024). Explainable generative design in manufacturing for reinforcement learning based factory layout planning. Journal of Manufacturing Systems, 72, 74–92. https://doi.org/10.1016/j.jmsy.2023.11.012> https://doi.org/10.1016/j.jmsy.2023.11.012

Rummukainen, H., Nurminen, J. K., Syrjänen, T., & Numminen, J.-P. (2018). Machine learning from prior designs for facility layout optimization.

Sun, C., Shrivastava, A., Singh, S., & Gupta, A. (2017). Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of the IEEE International Conference on Computer Vision (pp. 843–852). https://doi.org/10.1109/ICCV.2017.97> https://doi.org/10.1109/ICCV.2017.97

Tam, C., & Tong, T. K. (2003). GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction. Construction Management and Economics, 21(3), 257–266. https://doi.org/10.1080/0144619032000049665> https://doi.org/10.1080/0144619032000049665

Tsuchiya, K., Bharitkar, S., & Takefuji, Y. (1996). A neural network approach to facility layout problems. European Journal of Operational Research, 89(3), 556–563. https://doi.org/10.1016/0377-2217(95)00051-8> https://doi.org/10.1016/0377-2217(95)00051-8

View article in other formats

CrossMark check

CrossMark logo

Published

2024-12-31

Issue

Section

Articles

How to Cite

Eschemann, P., Nieße, A., & Sauer, J. (2024). Prediction of simulated factory layout throughput using artificial intelligence. New Trends in Computer Sciences, 2(2), 101–116. https://doi.org/10.3846/ntcs.2024.22160

Share