Share:


Leveraging generative adversarial networks to improve training image dataset

    Henrikas Giedra Affiliation
    ; Gabriela Vdoviak Affiliation

Abstract

Convolutional neural networks (CNNs) are powerful models of deep learning that are widely used in computer vision classification tasks. The purpose of this study is to investigate the impact of datasets on CNN performance, employing original datasets and expanded datasets with synthetically generated images. The Generative Adversarial Network (GAN) is an unsupervised deep learning method used for synthetic data generation and can address the limitations of image augmentations. In this study, a new GAN architecture is used to synthesize high-resolution images when dealing with limited training data. The StyleGAN2-ADA model is specifically designed to generate high-quality images using limited datasets. Adaptive Discriminator Augmentation (ADA) dynamically adjusts data augmentation, enhancing discriminator efficiency and stability. The findings indicate a reduction in the likelihood of overfitting, enhancement in network generalization, mitigation of class imbalance concerns, and a concurrent increase in the accuracy and stability of network classification.

Keyword : computer vision, convolutional neural networks, deep learning, generative adversarial networks, image classification, image synthesis

How to Cite
Giedra, H., & Vdoviak, G. (2024). Leveraging generative adversarial networks to improve training image dataset. New Trends in Computer Sciences, 2(1), 31–45. https://doi.org/10.3846/ntcs.2024.20515
Published in Issue
Jun 5, 2024
Abstract Views
50
PDF Downloads
26
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adadi, A. (2021). A survey on data‐efficient algorithms in big data era. Journal of Big Data, 8(1), Article 24. https://doi.org/10.1186/s40537-021-00419-9

Alomar, K., Aysel, H. I., & Cai, X. (2023). Data augmentation in classification and segmentation: A survey and new strategies. Journal of Imaging, 9(2), Article 46. https://doi.org/10.3390/jimaging9020046

Alzubaidi, L., Bai, J., Al-Sabaawi, A., Santamaría, J., Albahri, A. S., Al-dabbagh, B. S. N., Fadhel, M. A., Manoufali, M., Zhang, J., Al-Timemy, A. H., Duan, Y., Abdullah, A., Farhan, L., Lu, Y., Gupta, A., Albu, F., Abbosh, A., & Gu, Y. (2023). A survey on deep learning tools dealing with data scarcity: Definitions, challenges, solutions, tips, and applications. Journal of Big Data, 10(1), Article 46. https://doi.org/10.1186/s40537-023-00727-2

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), Article 53. https://doi.org/10.1186/s40537-021-00444-8

Bernhardt, M., Castro, D. C., Tanno, R., Schwaighofer, A., Tezcan, K. C., Monteiro, M., Bannur, S., Lungren, M. P., Nori, A. V, Glocker, B., Alvarez-Valle, J., & Oktay, O. (2021). Active label cleaning: Improving dataset quality under resource constraints. ArXiv. https://doi.org/10.48550/arXiv.2109.00574

Chan, W. H., Fung, B. S. B., Tsang, D. H. K., & Lo, I. M. C. (2023). A freshwater algae classification system based on machine learning with StyleGAN2-ADA augmentation for limited and imbalanced datasets. Water Research, 243, Article 120409. https://doi.org/10.1016/j.watres.2023.120409

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144. https://doi.org/10.1145/3422622

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. ArXiv. https://doi.org/10.48550/arXiv.1710.10196

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., & Aila, T. (2020a). Training generative adversarial networks with limited data. Advances in Neural Information Processing Systems, 33, 12104–12114.

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4401–4410). IEEE. https://doi.org/10.1109/CVPR.2019.00453

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020b). Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8110–8119). IEEE. https://doi.org/10.1109/CVPR42600.2020.00813

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Motamed, S., Rogalla, P., & Khalvati, F. (2021). Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images. Informatics in Medicine Unlocked, 27, Article 100779. https://doi.org/10.1016/j.imu.2021.100779

Munappy, A. R., Bosch, J., Olsson, H. H., Arpteg, A., & Brinne, B. (2022). Data management for production quality deep learning models: Challenges and solutions. Journal of Systems and Software, 191, Article 111359. https://doi.org/10.1016/j.jss.2022.111359

Pang, G., Shen, C., Cao, L., & van den Hengel, A. (2020). Deep learning for anomaly detection: A review. ArXiv. https://doi.org/10.48550/arXiv.2007.02500

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), Article 160. https://doi.org/10.1007/s42979-021-00592-x

Seliya, N., Abdollah Zadeh, A., & Khoshgoftaar, T. M. (2021). A literature review on one-class classification and its potential applications in big data. Journal of Big Data, 8(1), Article 122. https://doi.org/10.1186/s40537-021-00514-x

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), Article 60. https://doi.org/10.1186/s40537-019-0197-0