Existence of solutions for critical systems with variable exponents
DOI: https://doi.org/10.3846/mma.2018.036Abstract
In this work, we deal with elliptic systems under critical growth conditions on the nonlinearities. Using a variant of concentration-compactness principle, we prove an existence result.
Keywords:
p(x)-Laplacian, generalized Sobolev spaces, critical Sobolev exponents, concentration-compactness principle, critical points theoryHow to Cite
Share
License
Copyright (c) 2018 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
P. Amster, P. De Napoli and M.C. Mariani. Existence of solutions for elliptic systems with critical Sobolev exponent. EJDE, 2002(49):1–13, 2002.
L. Boccardo and D.G. de Figueiredo. Some remarks on a system of quasilinear elliptic equations. Nonlinear Differen. Equat. and Appl, 9:309–323, 2002.
J.F. Bonder, N. Saintier and A. Silva. Existence of solution to a critical equation with variable exponent. Ann. Acad. Sci. Fenn. Math., 37:579–594, 2012.
J.F. Bonder, N. Saintier and A. Silva. On the Sobolev embedding theorem for variable exponent spaces in the critical range. JDE, 253(5):1604–1620, 2012.
J.F. Bonder and A. Silva. Concentration-compactness principle for variable exponent spaces and applications. EJDE, 141:1–18, 2010.
J.F. Bonder, S. Martınez and J.D. Rossi. Existence results for gradient elliptic systems with nonlinear boundary conditions.Nonlinear Differ. Equ. Appl., 14(1–2):153–179, 2007.
H. Brezis and L. Nirenberg. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure. Appl. Math, 36:437–477, 1983.
Y. Chen, S. Levine and M. Rao. Variable exponent, linear growth functionals in image restoration. SIAMJ. Appl. Math., 66(4):1383–1406, 2006.
L. Diening, P. Harjulehto, P. Hasto and M. Ruzicka. Lebesgue and Sobolev spaces with variable exponents. Springer, 2010.
L. Diening, P. Hasto and A. Nekvinda. Open problems in variable exponent Lebesgue and Sobolev spaces. FSDONA04 Proceedings, Milovy, Czech Republic, 66:38–58, 2004.
A. Djellit and S. Tas. Quasilinear elliptic systems with critical Sobolev exponents in RN. Nonlinear Anal,66(7):1485–1497, 2007.
A. Djellit, Z. Youbi and S. Tas. Existence of solutions for elliptic systems in RN involving the p(x)-aplacian. EJDE, 2012(131):1–10, 2012.
D.E. Edmunds and J. Rakosnik. Sobolev embeddings with variable exponent. Studia Math.,143(3):267–293, 2000.
X. L. Fan, Q. H. Zhang and D. Zhao. Eigenvalues of the p(x)-Laplacian Dirichlet problem.J. Math. Annl. App, 306(2):306–317, 2005.
X.L. Fan, J. Shen and D. Zhao. Sobolev embedding theorems for spaces Wk,p(x)(Ω).J. Math. Anal. App., 262:749–760, 2001.
X.L. Fan and Q.H. Zhang. Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear. Anal,52:1843–1852, 2003.
X.L. Fan and D. Zhao. On the spacesLp(x)andWm,p(x).J. Math. Anal. Appl,263:424–446, 2001.
Y. Fu. The principle of concentration compactness in L p(x)spaces and its application.Nonlinear. Anal,71(5-6):1876–1892, 2009.
A. El Hamidi. Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. App, 300:30–42, 2004.
P. Hasto. The p(x)-Laplacian and applications.The Journal of Analysis, 15:53–62, 2007.
H. Hudzik. On generalized Orlicz-Sobolev spaces. Funct. Approximatio Commentarii Mathematici, 4:37–51, 1976.
Y. Jebri. The Mountain pass theorem. Combridge university press, New York, 2003.
O. Kavian.Introduction a la theorie des points critiques et applications aux problemes elliptiques. Springer-Verlag France, Paris, 1993.
F. Li, Z. Li and L. Pi. Variable exponent functionals in image restoration. App.Math. Comput., 216(3):870–882, 2010.
P.L. Lions. The concentration-compactness principle in calculus of variation, the limit case part 1 and 2.Rev, Mat, Ibroamericana, 1(1):145–201, 1985.
S. Ogras, R.A. Mashiyev, M. Avci and Z. Yucedag. Existence of solution for aclass of elliptic systems in RN involving the (p(x),q(x))-Laplacian.J. Inequal. Appl., 612936:1–16, 2008.
S. Samko. On a progress in the theory of Lebesgue spaces with variable exponent:maximal and singular operators. Integral Transforms Spec. Funct., 16(5):461–482, 2005.
A. Silva. Multiple solutions for the p(x)-Laplace operator with critical growth. Adv. Nonlinear Stud., 11:63–75, 2011.
M. Ruzicka. Electrorheological Fluids: Modeling and Mathematical theory. Springer-Verlage, Berlin, 2000.
X. Xu and Y. An. Existence and multiplicity of solutions for elliptic systems with nonstandard growth conditions in RN. Nonlinear. Anal, 68:956–968, 2008.
Q. Zhang, Y. Guo and G. Chen. Existence and multiple solutions for a variable exponent system. Nonlinear Anal., 73(12):3788–3804, 2010.
X. Zhang and Y. Fu. Solutions of p(x)-Laplacian equations with critical exponent and perturbations in RN. EJDE, 2012(120):1–14, 2012.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2018 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.