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1 Introduction

Let Ω be a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω. We
consider the following nonlinear elliptic systems of the form

−∆p(x)u = |u|α(x)−2u+ λ∂F∂u (x, u, v), in Ω,

−∆q(x)v = |v|β(x)−2v + λ∂F∂v (x, u, v), in Ω,

u = 0, v = 0, on ∂Ω,

(1.1)

where λ is a positive parameter and α, β, p, q : Ω → R are Lipschitz continuous
functions verifying

1 < p−:=inf
Ω
p(x) ≤ p+:=sup

Ω

p(x)<N, 1 < q−:=inf
Ω
q(x)≤q+:= sup

Ω

q(x)<N,

�
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1 ≤ α(x) ≤ p∗(x) =
Np(x)

N − p(x)
, 1 ≤ β(x) ≤ q∗(x) =

Nq(x)

N − q(x)
, ∀x ∈ Ω,

Ap=
{
x ∈ Ω, α(x) = p

∗
(x)
}
6= ∅, Aq=

{
x ∈ Ω, β(x) = q

∗
(x)
}
6= ∅.

We designate by (∂F∂u ,
∂F
∂v ) the gradient of the potential F : Ω × R2 → R and

∆r(.)u := div
(
|∇u|r(.)−2∇u

)
is the so-called r(.)-Laplacian operator.

Recently, elliptic equations involving variable exponents with non-standard
growth conditions have been developed very markedly in last decade due to
the fact that they have arisen in the mathematical modeling of various physical
processes, as in nonlinear elasticity theory, electrorheological fluids dynamics
and image restorations. Such problems have attracted an increasing attention
and many results have been obtained by several authors. We would mention to
( [3], [4], [16], [19], [20], [26], [30], [31]) and survey papers ( [8], [10], [14], [21],
[24], [27], [29]) for the advances and references in this area.

In particular, it’s well known that the class of quasilinear elliptic problems
with constant critical exponents in bounded or unbounded domain occupies a
considerable place in the literature, which was discussed for the first time in
the seminal paper [7] by Brezis–Nirenberg. Afterward, Lions [25] established
the concentration-compactness principle in the limit case in the calculus of
variation and it became one of the main techniques played an important role in
order to deal with such issues. Several results have been obtained by variational
methods, thus, it would be interesting to refer the reader to some works for
gradient type in the constant exponent case.

Djellit and Tas [11] established the existence of nontrivial weak solutions
for the systems −∆pu = f(x)|u|p∗−2u+ λFu(x, u, v), inRN ,

−∆qv = g(x)|v|q∗−2v + λFv(x, u, v), inRN ,
u, v → 0, as |x| → ∞,

for all λ ∈ (0, λ1) by using Lions’s principe with mountain pass theorem. Here
λ1 is the first eigenvalue of the system −∆pu = λFu(x, u, v), inRN ,

−∆qv = λFv(x, u, v), inRN ,
u, v → 0, as |x| → ∞, u > 0, v > 0.

Mart́ınez and Rossi [6] inspected in detail the following system on bounded
set of RN with nonlinear coupling at the boundary

−∆pu = |u|p−2u,
−∆qv = |v|q−2v,
|u|p−2u∂u∂ν = Fu(x, u, v), |v|q−2v ∂v∂ν = Fv(x, u, v).

They proved the existence of positive solutions under suitable assumptions on
the potential F based on variational arguments. The authors examined the
subcritical, resonant and critical growth on F . Knowing that this contribution
comes within the generalization results described on [1] and [2].

Math. Model. Anal., 23(4):596–610, 2018.
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In a natural way, Lions’s principle is generalized to the variable exponents
setting by Bonder and Silva in [5], and they proved an existence result to the
following equation

−∆p(x)u = |u|q(x)−2u+ λ(x)|u|r(x)−2u, inΩ,

where
{
x ∈ Ω, q(x) = p

∗
(x)
}
6= ∅, Ω is a bounded smooth domain in RN and

r(x) < p(x)− δ, q(x) ≤ p∗(x). Moreover, Silva in [28], considered the following
critical equation

−∆p(x)u = |u|q(x)−2u+ λf(x, u), in Ω,

with
{
x ∈ Ω, q(x) = p

∗
(x)
}
6= ∅. Applying variational method with the above

principle, the author proved the existence of three nontrivial solutions.
On the other hand, Fu in [18] established comparable results on the concen-

tration-compactness principle in W 1,p(x)(Ω) and discuss existence results for
p(x)-Laplacian equation involving critical exponents

−∆p(x)u+ λ|u|q(x)−2u = f(x, u) + h(x)|u|p
∗(x)−2u, in RN ,

Shortly afterward, Zhang and Fu modify the principle of concentration-
compactness in W 1,p(x)(RN ) by proving typical Sobolev inequalities (see [32]).
Then, by using variational method, they obtained the existence of weak solu-
tions for the following critical equation

−∆p(x)u+ |u|q(x)−2u = |u|p
∗(x)−2u+ h(x), in RN ,

when the perturbation is small enough.
Our objective in this article is to study the existence of nontrivial weak

solutions for system (1.1). Precisely, following the same ideas introduced in [2],
[6] and [11], we overcome the difficulties caused by the lack of compactness in
Sobolev embedding using a variant of concentration-compactness principle on
variable exponents Sobolev spaces and mountain pass theorem.

The rest of this paper is organized as follows: in Section 2, we recall some
definitions and basic properties on variable exponents spaces. Section 3 is
devoted to the proof of the main results.

2 Preliminary results and hypotheses

It’s well-known that the generalized Lebesgue-Sobolev spaces practically enjoy
the same Sobolev spaces properties. Unfortunately, convolution and translation
properties doesn’t hold, (see [9], [13], [15], [17]).
Set

C+(Ω) =
{
h ∈ C(Ω);h(x) > 1, ∀ x ∈ Ω

}
.

For p ∈ C+(Ω), let Lp(x)(Ω) be the collection of all functions u : Ω ⊂ RN → R,
such that

%(u) =

∫
Ω

|u(x)|p(x)dx < +∞,
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equipped with the Luxemburg norm

‖u‖p(x) := |u|Lp(x)(Ω) = inf
{
λ > 0 : %(u(x)/λ) < 1

}
.

We denote by Lp
′
(x)(Ω) the Lebesgue dual space, i.e. p

′
(x) = p(x)

p(x)−1 . The

variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =
{
u : Ω ⊂ RN → R : u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)

}
,

endowed with the usual norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x).

The space W
1,p(x)
0 (Ω) is defined as the closure of C∞0 (Ω) with respect to

the norm ‖u‖1,p(x). In this way, Lp(x)(Ω), W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are

separable and reflexive Banach spaces ( [13], [17]).

Proposition 1. ( [13], [17]) For u ∈ Lp(x)(Ω) and v ∈ Lp
′
(x)(Ω), we have the

Hölder’s inequality∫
Ω

|uv|dx ≤
(

1

p−
+

1

p′−

)
|u|p(x)|v|p′ (x) ≤ 2|u|p(x)|v|p′ (x).

Proposition 2. ( [13], [17]) If u ∈ Lp(x)(Ω), then

min{|u|p
−

p(x), |u|
p+

p(x)} ≤ %(u) ≤ max{|u|p
−

p(x), |u|
p+

p(x)}.

In addition, we have

1. |u|p(x) < 1(resp. = 1, > 1)⇔ %(u) < 1(resp. = 1, > 1),

2. |u|p(x) < 1⇒ |u|p
+

p(x) ≤ %(u) ≤ |u|p
−

p(x),

3. |u|p(x) > 1⇒ |u|p
−

p(x) ≤ %(u) ≤ |u|p
+

p(x),

4. %(u/| u |p(x)) = 1.

Proposition 3. ( [13], [15]) Let p(x) and q(x) be measurable functions such
that p(x) ∈ L∞(Ω) and 1 ≤ p(x)q(x) ≤ ∞ a.e. in Ω. If u ∈ Lq(x)(Ω), u 6= 0.
Then

|u|p(x)q(x) ≤ 1⇒ |u|p
−

p(x)q(x) ≤|| u |
p(x)|q(x)≤ |u|p

+

p(x)q(x),

|u|p(x)q(x) ≥ 1⇒ |u|p
+

p(x)q(x) ≤|| u |
p(x)|q(x)≤ |u|p

−

p(x)q(x).

In particular, if p(x) = p is a constant, then || u |p|q(x)=| u |ppq(x) .

Proposition 4. ( [13], [15]) If u, un ∈ Lp(x)(Ω), n = 1, 2, . . ., then the follow-
ing statements are mutually equivalent

Math. Model. Anal., 23(4):596–610, 2018.
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1. limn→∞ | un − u |p(x)= 0,

2. limn→∞ %(un − u) = 0,

3. un → u in measure in Ω and limn→∞ %(un) = %(u).

Proposition 5. ( [13], [15]) If p(x) : Ω → R is Lipschitz-continuous function,

then there exists a positive constant c such that

‖u‖p∗(x) ≤ c‖u‖1,p(x), ∀u ∈W
1,p(x)
0 (Ω).

Proposition 6. ( [9], [17]) Let p, q ∈ C(Ω) be such that 1 ≤ q(x) ≤ p∗(x) for
all x ∈ Ω. Assume moreover that the function p and q are log-Hölder continu-
ous. Then the embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is continuous. Moreover, if
inf
Ω

(p∗ − q) > 0 then, the embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is compact.

Proposition 7. ( [9], [17]) There is a constant C > 0 such that

‖u‖p(x) ≤ C‖∇u‖p(x), for all u ∈W 1,p(x)
0 (Ω).

‖u‖p(x) = ‖∇u‖p(x) and ‖u‖1,p(x) are equivalent norms on W
1,p(x)
0 (Ω).

The main tool used to prove the existence results is mountain pass theorem.
Nevertheless, the lack of compactness in critical generalized Sobolev embedding
leads to convergence problem. Fortunately unbounded Section 3, the technical
used here is the following principle of concentration-compactness in W 1,p(x)(Ω)
established in [5].

Proposition 8. Let p(x) and q(x) be two Lipschitz continuous functions such
that

1 < inf
Ω
p ≤ sup

Ω

p < N and 1 ≤ q(x) ≤ p∗(x) in Ω.

Let {un}n∈N be a weakly convergent sequence in W
1,p(x)
0 (Ω) with weak limit u,

and such that

|∇un|p(x) ⇀ µ (weakly in sense of measures),

|un|q(x) ⇀ ν (weakly in sense of measures).

Assume moreover that Ap = {x ∈ Ω, q(x) = p∗(x)} is nonempty.Then for
some countable index set J , we have

ν = |u|q(x) +
∑
j∈J

νjδxj , νj > 0, µ ≥ |∇u|p(x) +
∑
j∈J

µjδxj , µj > 0,

Spν
1

p∗(xj)

j ≤ µ
1

p(xj)

j , ∀j ∈ J.

Here δxj is the Dirac measure at xj, {xj} ⊂ Ap, {µj}, {νj} ⊂]0,+∞[ and Sp
is the best constant in the Gagliardo-Nirenberg-Sobolev inequality for variable
exponents corresponding to the embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω), namely

Sp = S(p(x), q(x), Ω) = inf
u∈Wp(x)

0 (Ω)

‖∇u‖p(x)
‖u‖q(x)

, u 6= 0.
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We denote X the product space W
1,p(x)
0 (Ω) ×W 1,q(x)

0 (Ω) endowed with
the norm

‖(u, v)‖p(x),q(x) = max{‖∇u‖p(x), ‖∇v‖q(x)}.

For every (u, v) in X, let

J(u, v) =

∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
Ω

1

q(x)
|∇v|q(x)dx,

K(u, v) =

∫
Ω

F (x, u(x), v(x))dx,

L(u, v) =

∫
Ω

1

α(x)
|u|α(x)dx+

∫
Ω

1

β(x)
|v|β(x)dx,

Iλ(u, v) = J(u, v)− L(u, v)− λK(u, v), ∀λ > 0.

In order to guarantee that the functional Iλ satisfies the topological hypoth-
esis and the geometric assumptions of mountain pass theorem (see [22] or [23]),
we suppose that

(H1) The nonlinearity F ∈ C1
(
RN × R2,R+

)
and satisfied F (x, 0, 0) = 0.

(H2) There exists positive functions ai, bi, (i = 1, 2) such that∣∣∣∂F
∂u

(x, u, v)
∣∣∣ ≤ a1(x)|u|p

−
1 −1 + a2(x)|v|p

+
1 −1,∣∣∣∂F

∂v
(x, u, v)

∣∣∣ ≤ b1(x)|u|q
−
1 −1 + b2(x)|v|q

+
1 −1,

where 1 < p1(x), q1(x) ≤ inf(p(x), q(x)), for all x ∈ Ω. The weight functions
ai and bi, (i = 1, 2) belong respectively to the generalized Lebesgue spaces
Lαi(x)(Ω) and Lσ(x)(Ω), where

α1(x) =
p(x)

p(x)− 1
, σ(x) =

p∗(x)q∗(x)

p∗(x)q∗(x)− p∗(x)− q∗(x)
, α2(x) =

q(x)

q(x)− 1
.

(H3) ∃ M > 0, ∃ θ1 ∈ (p+, α−), ∃ θ2 ∈ (q+, β−), for all (x, u, v) ∈ (Ω,R2)
where |u|θ1 , |v|θ2 ≥M

0 < F (x, u, v) ≤ u

θ1

∂F

∂u
(x, u, v) +

v

θ2

∂F

∂v
(x, u, v).

(H4) ∃ c > 0 such that

|F (x, u, v)| ≤ c(|u|r1(x) + |v|r2(x)), ∀ (x, u, v) ∈ (Ω,R2),

where r1, r2∈ C+(Ω, p+< r−1 ≤ r
+
1� α−≤ α+ and q+< r−2 ≤ r

+
2� β−≤ β+.

An example of such functions is F (x, u, v) = a(x)|u|γ(x)|v|δ(x), where γ(x),
δ(x) ≥ 1 and a ∈ Lθ(x)(Ω) ∩ L∞(Ω) is positive with

θ(x)=
p∗(x)q∗(x)

p∗(x)q∗(x)−γ(x)q∗(x)−δ(x)p∗(x)
,
γ(x)

p(x)
+
δ(x)

q(x)
> 1,

γ(x)

p∗(x)
+
δ(x)

q∗(x)
< 1.

It is easy to check that (H1) holds, Young’s inequality gives (H2) and (H4).

Moreover; (H3) holds if the functions γ and δ are such that γ−

θ1
+ δ−

θ2
≥ 1.

Math. Model. Anal., 23(4):596–610, 2018.
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Notice that under the above assumptions Iλ is well defined and is of class
C1(X,R). Moreover, for all (u, v), (ϕ,ψ) ∈ X

I
′

λ(u, v)(ϕ,ψ) =

∫
Ω

|∇u|p(x)−2∇u∇ϕdx+

∫
Ω

|∇v|q(x)−2∇v∇ψdx

−
∫
Ω

|u|α(x)−2uϕdx−
∫
Ω

|v|β(x)−2vψdx

− λ
∫
Ω

∂F

∂u
(x, u, v)ϕdx− λ

∫
Ω

∂F

∂v
(x, u, v)ψdx, ∀λ > 0.

The dual space X is denoted by X∗ and ‖.‖∗ stands its norm. Hence, weak
solutions of the system (1.1) are exactly critical points of the functional Iλ.

Now, we can state the following existence result.

Theorem 1. If the hypotheses (H1)–(H4) are satisfied, then there exists a con-
stant λ > 0 such that, if λ > λ, the problem (1.1) has at least one weak solution
in X.

3 Main results

We need some lemmas to prove the main theorem.

Lemma 1. Under the assumptions (H1) and (H2), the functional K is well
defined, lower weakly semicontinuous and it is of class C1 in X. Moreover, the
operator K

′
is compact from X to X∗.

The proof of the above Lemma follows the same arguments as in [12].

Lemma 2. Let (un, vn)⊂X be a Palais-Smale sequence for the Euler-Lagrange
functional Iλ, then under hypothesis (H3), (un, vn) is bounded.

Proof. Let (un, vn) ⊂ X be a Palais-Smale sequence, we have

Iλ(un, vn) =

∫
Ω

[
|∇un|p(x)

p(x)
− |un|

α(x)

α(x)
+
|∇vn|q(x)

q(x)
− |vn|

β(x)

β(x)

− λF (x, un, vn)]dx = C + o(1).

On the other hand

I
′

λ(un, vn)(ϕ,ψ) =

∫
Ω

|∇un|p(x)−2∇un∇ϕdx+

∫
Ω

|∇vn|q(x)−2∇vn∇ψdx

−
∫
Ω

|un|α(x)−2unϕdx−
∫
Ω

|vn|β(x)−2vnψdx

− λ
∫
Ω

∂F

∂u
(x, un, vn)ϕdx− λ

∫
Ω

∂F

∂v
(x, un, vn)ψdx = o(1).
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Then

Iλ(un, vn)− I
′

λ(un, vn)
(un
θ1
,
vn
θ2

)
≥
(

1

p+
− 1

θ1

)
×
∫
Ω

|∇un|p(x)dx+

(
1

q+
− 1

θ2

)∫
Ω

|∇vn|q(x)dx

+

(
1

θ1
− 1

α−

)∫
Ω

|un|α(x)dx+

(
1

θ2
− 1

β−

)∫
Ω

|vn|β(x)dx

+ λ

∫
Ω

[
un
θ1

∂F

∂u
(x, un, vn)(x, un, vn) +

vn
θ2

∂F

∂v
− F (x, un, vn)

]
dx.

Using (H3), we get

Iλ(un, vn)− I
′

λ(un, vn)
(un
θ1
,
vn
θ2

)
≥
(

1

p+
− 1

θ1

)∫
Ω

|∇un|p(x)dx+

(
1

q+
− 1

θ2

)∫
Ω

|∇vn|q(x)dx.

Proposition 2 gives us

Iλ(un, vn)− I
′

λ(un, vn)
(un
θ1
,
vn
θ2

)
≥
( 1

p+
− 1

θ1

)
min(‖un‖p

+

1,p(x), ‖un‖
p−

1,p(x))

+
( 1

q+
− 1

θ2

)
min(‖vn‖q

+

1,q(x), ‖vn‖
q−
1,q(x)),

thus

C + o(1) ≥
(

1

p+
− 1

θ1

)
min(‖un‖p

+

1,p(x), ‖un‖
p−

1,p(x))

+

(
1

q+
− 1

θ2

)
min

(
‖vn‖q

+

1,q(x), ‖vn‖
q−
1,q(x)

)
.

Now, without loss of generality, we have may ‖un‖1,p(x) ≥ ‖vn‖1,q(x). There-
fore, for n large enough, we get

C + o(1) ≥
(

1

p+
− 1

θ1

)
min

(
‖vn‖p

+

1,q(x), ‖vn‖
p−
1,q(x)

)
+

(
1

q+
− 1

θ2

)
min

(
‖vn‖q

+

1,q(x), ‖vn‖
q−
1,q(x)

)
,

hence, (un, vn) is bounded in X. ut

Lemma 3. Let (un, vn)n∈N ⊂ X be a Palais-Smale sequence with energy level
C, if

C < inf((
1

p+
− 1

α−
)SNp , (

1

q+
− 1

β−
)SNq ),

then there exists a subsequence strongly convergent in X. Sp and Sq are the
best Sobolev constants corresponding to the embedding W 1,p(x)(Ω) ↪→ Lα(x)(Ω),
W 1,q(x)(Ω) ↪→ Lβ(x)(Ω) respectively.

Math. Model. Anal., 23(4):596–610, 2018.



604 H. Lalili, S. Tas and A. Djellit

Proof. By Lemma 2 (un, vn)n∈N is bounded in X, passing to a subsequence,
still denoted by (un, vn)n∈N weakly convergent in X, then there exists positive
and bounded measures µ, ν, µ̃, ν̃ in Ω such that

|∇un|p(x) ⇀ µ, |un|α(x) ⇀ ν,

(respectively |∇vn|q(x) ⇀ µ̃, |vn|β(x) ⇀ ν̃). Hence by Proposition 8, if J = ∅
then un → u in Lα(x)(Ω). Let us show that if

C < inf

((
1

p+
− 1

α−

)
SNp ,

(
1

q+
− 1

β−

)
SNq

)
,

and (un, vn)n∈N is a Palais-Smale sequence with energy level C then J = ∅
(respectively J = ∅). Suppose that J 6= ∅, for any j ∈ J , let φj,ε ∈ C∞0 (B2ε(xj))
such that 0 ≤ φ < 1, |∇φj,ε| ≤ C/ε and φj,ε ≡ 1 on B(xj , ε). Substitute ϕ for

φj,εun and ψ for 0 in I
′

λ(un, vn)(ϕ,ψ) and using the fact that I
′

λ(un, vn) → 0
in X∗, we obtain

lim
n→∞

∫
Ω

|∇un|p(x)−2∇un∇φj,εundx = lim
n→∞

[ ∫
Ω

−|∇un|p(x)φj,εdx

+

∫
Ω

|un|α(x)φj,εdx+ λ

∫
Ω

∂F

∂u
(x, un, vn)φj,εundx

]
.

Because of the compactness of ∂F
∂u and Proposition 8 we get

lim
n→∞

∫
Ω

|∇un|p(x)−2∇un∇φj,εundx

=

∫
Ω

−φj,εdµ+ λ lim
n→∞

∫
Ω

∂F

∂u
(x, un, vn)φj,εundx+

∫
Ω

φj,εdν. (3.1)

By Hölder’s inequality, it is easy to check that

lim
ε→0

∫
Ω

|∇un|p(x)−2∇un∇φj,εundx = 0, as n→ +∞.

Indeed,

lim
n→∞

∣∣∣ ∫
Ω

|∇un|p(x)−2∇un∇φj,εundx
∣∣∣ ≤ lim sup

n→0

∫
Ω

|∇un|p(x)−1

× | ∇φj,εun | dx ≤ 2 lim sup
n→0

| |∇un|p(x)−1 |p′ (x)| ∇φj,εun |p(x) .

Since (un) is bounded, the real-valued sequence
∣∣|∇un|p(x)−1∣∣p′ (x) is also boun-

ded. In view of Proposition 2, it suffices to write

|∇un|(p(x)−1)p
′i

p′ (x)
≤
(
|∇un|p(x)−1

)
=

∫
Ω

|∇un|p(x)dx ≤ |∇un|p
j

p(x), i, j = + or− .
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Moreover (un) is bounded in W 1,p(x)(B2ε(xj)), then there exists a subsequence
denoted again (un) weakly convergente to u in Lp(x)(B2ε(xj)). Hence

lim
n→∞

|
∫
Ω

|∇un|p(x)−2∇un∇φj,εundx |≤ c | ∇φj,εu |p(x)

≤ 2c lim sup
ε→0

||∇φj,ε|p(x)|( p∗(x)
p(x)

)′ ,B2ε(xj)
| |u|p(x) | p∗(x)

p(x)
,B2ε(xj)

= 2c lim sup
ε→0

||∇φj,ε|p(x)| N
p(x)

,B2ε(xj)
| |u|p(x) | N

N−p(x) ,B2ε(xj)

and∫
B2ε(xj)

(| ∇φj,ε|p(x))(
p∗(x)
p(x)

)
′

dx =

∫
B2ε(xj)

| ∇φj,ε|Ndx

≤ (C/ε)
N
meas(B2ε(xj)) =

(
4N/N

)
ωN ,

where ωN is the surface area of an N -dimensional unit sphere. Since∫
B2ε(xj)

(
|u|p(x)

) p∗(x)
p(x)

dx → 0, as ε → 0, we obtain |∇φj,εu|p(x) → 0, which

implies

lim
ε→0

∫
Ω

|∇un|p(x)−2∇un∇φj,εundx = 0, as n→ +∞.

Similarly, we can also get

lim
ε→0

∫
Ω

∂F

∂u
(x, un, vn)φj,εundx = 0, as n→ +∞.

Indeed, using Hölder’s inequality with (H2) and since 0 ≤ φj,ε ≤ 1 we obtain

lim
n→0

∫
Ω

∂F

∂u
(x, un, vn)φj,εundx ≤ lim

n→0

∫
Ω

(
a1(x)|un|p

−
1 −1

+ a2(x)|vn|p
+
1 −1

)
φj,εundx ≤ lim

n→0
(|a1(x)|α1

∣∣∣|un|p−1 −1∣∣∣
p∗
|φj,εun|p

+ |a2(x)|β ||vn|p
+
1 −1|q∗ |φj,εun|p∗) ≤ lim

n→0
(|a1(x)|α1 ||un|p

−
1 −1|p∗ |un|p,B2ε

+ |a2(x)|β ||vn|p
+
1 −1|q∗ |un|p∗,B2ε

).

The above propositions yield

lim
n→0

∫
Ω

∂F

∂u
(x, un, vn)φj,εundx ≤ lim

n→0
(|a1|α1

||un||
p−1 −1
p,Ω ||un||p;B2ε

+ |a2|β ||vn||
p+1 −1
q,Ω ||un||p;B2ε

)

≤ lim
n→0

(
|a1|α1

| |un| |
p−1 −1
p,Ω + |a2|β | |vn| |

p+1 −1
q,Ω

)
||un||p;B2ε

and this last goes to zero because of

|a1|α1
| |un| |

p−1 −1
p,Ω + |a2|β | |vn| |

p+1 −1
q,Ω < +∞.
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Thus, it follows from (3.1) that µj = νj for any j ∈ J . Using again Proposition
8, we conclude that νj ≥ SNp . Consequently∫

Ω

|un|α(x)dx→
∫
Ω

dν≥
∫
Ω

|u|α(x)dx+SNp
∑
j∈J

δxj ≥
∫
Ω

|u|α(x)dx+SNp CardJ.

If Card J =∞, we get a contradiction.
On the other hand, we have

Iλ(un, vn)− I
′

λ(un, vn)
(un
p+
,
vn
q+

)
=

∫
Ω

1

p(x)
|∇un|p(x)dx+

∫
Ω

1

q(x)
|∇vn|q(x)dx

−
∫
Ω

1

α(x)
|un|α(x)dx−

∫
Ω

1

β(x)
|vn|β(x)dx−

∫
Ω

λF (x, un, vn)dx

− 1

p+

∫
Ω

|∇un|p(x)dx−
1

q+

∫
Ω

|∇vn|q(x)dx+
1

p+

∫
Ω

|un|α(x)dx

+
1

q+

∫
Ω

|vn|β(x)dx+
λ

p+

∫
Ω

∂F

∂u
(x, un, vn)undx+

λ

q+

∫
Ω

∂F

∂v
(x, un, vn)vndx

≥ 1

p+

∫
Ω

|∇un|p(x)dx+
1

q+

∫
Ω

|∇vn|q(x)dx−
1

α−

∫
Ω

|un|α(x)dx

−
∫
Ω

1

β−
|vn|β(x)dx−

∫
Ω

λF (x, un, vn)dx− 1

p+

∫
Ω

|∇un|p(x)dx

− 1

q+

∫
Ω

|∇vn|q(x)dx+
1

p+

∫
Ω

|un|α(x)dx+
1

q+

∫
Ω

|vn|β(x)dx

+
λ

p+

∫
Ω

∂F

∂u
(x, un, vn)undx+

λ

q+

∫
Ω

∂F

∂v
(x, un, vn)vndx,

hence

C ≥
( 1

p+
− 1

α−

)∫
Ω

|un|α(x)dx+
( 1

q+
− 1

β−

)∫
Ω

|vn|β(x)dx.

When n→∞ we obtain

C≥
( 1

p+
− 1

α−

)(∫
Ω

|u|α(x)dx+
∑
j∈J

νjδxj

)
+
( 1

q+
− 1

β−

)(∫
Ω

|v|β(x)dx+
∑
j∈J

νjδxj

)
,

but, νj ≥ SNp (and νj ≥ SNq )

C≥(
1

p+
− 1

α−
)(

∫
Ω

|u|α(x)dx+SNp CardJ)+(
1

q+
− 1

β−
)(

∫
Ω

|v|β(x)dx+SNq CardJ).

Suppose that J ∪ J 6= ∅ and thus

C ≥ inf
(( 1

p+
− 1

α−

)
SNp ,

( 1

q+
− 1

β−

)
SNq

)
,

C≥(
1

p+
− 1

α−
)(

∫
Ω

|u|α(x)dx+ SNp CardJ)+(
1

q+
− 1

β−
)(

∫
Ω

|v|β(x)dx+SNq CardJ),
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C ≥ inf
(( 1

p+
− 1

α−

)
SNp , (

1

q+
− 1

β−

)
SNq

)
.

Therefore, if C < inf(( 1
p+ −

1
α− )SNp , (

1
q+ −

1
β− )SNq ), the set J ∪ J is empty,

which means that ‖un‖α(x) → ‖u‖α(x) and ‖vn‖β(x) → ‖v‖β(x). Taking this
together with the fact that (un, vn) ⇀ (u, v) in X, we have un → u strongly in
Lα(x)(Ω) and vn → v strongly in Lβ(x)(Ω). On the other hand

(J
′
(un, vn)− J

′
(um, vm))(un − um, 0) = (I

′

λ(un, vn)

− I
′

λ(um, vm))(un − um, 0) + λ(K
′
(un, vn)−K

′
(um, vm))(un − um, 0))

+ (L
′
(un, vn)− L

′
(um, vm))(un − um, 0)),

thus I
′
(un, vn) → 0, i.e I

′
(un, vn) is a Cauchy sequence in X∗. Moreover, by

Hölder’s inequality

(L
′
(un, vn)− L

′
(um, vm)(un − um, 0))

=

∫
(|un|α(x)−2un − |um|α(x)−2um)(un − um)dx

≤‖ |un|α(x)−2un − |um|α(x)−2um ‖
L

α(x)
α(x)−1 (Ω)

‖ un − um ‖Lα(x)(Ω) .

Since (un) is a Cauchy sequence in Lα(x)(Ω), L
′
(un, vn) is a Cauchy sequence

in X∗. The compactness of K
′

gives

(un, vn) ⇀ (u, v)⇒ K
′
(un, vn)→ K

′
(u, v),

i.e. K
′
(un, vn) is a Cauchy sequence in X∗.

Therefore, according to the elementary inequalities

| λ− µ |p(x)

≤


(| λ |p(x)−2 λ− | µ |p(x)−2 µ).(λ− µ), if p(x) ≥ 2,

[(| λ |p(x)−2 λ− | µ |p(x)−2 µ).(λ− µ)]
p(x)
2 (| λ | − | µ |)

p(x)(2−p(x))
2 ,

if 1 < p(x) < 2,

∀λ, µ ∈ RN , where . denote the standard inner product in RN . Replacing λ
and µ by ∇un and ∇um respectively and integrating over Ω, we obtain

‖un − um ‖p
−
≤
∣∣∣(J ′(un, vn)− J

′
(um, vm))(un − um, 0)

∣∣∣ , if p(x) ≥ 2,

and if 1 < p(x) < 2, we get

‖un − um ‖2 ≤ | (J
′
(un, vn)− J

′
(um, vm))(un − um, 0) |

× (‖ un ‖p
−

1,p(x) − ‖ um ‖
p−

1,p(x))
p−(2−p+)

2 .

Taking into account the fact that (un) is bounded in W 1,p(x)(Ω)

(J
′
(un, vn)− J

′
(um, vm))(un − um, 0)→ 0, as n,m→∞,
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we find that (un) is a Cauchy sequence in W 1,p(x)(Ω). We proceed similarly
for (vn) with (J

′
(un, vn)− J ′(um, vm))(0, vn − vm). ut

Now we are in position to prove Theorem 1.

Proof. The proof is an immediate consequence of the mountain pass theorem,
Lemma 2 and Lemma 3. Precisely, it suffices to verify that Iλ has the mountain-
pass geometry and that Iλ(tu, tv) < 0 for some t > 0. About the later condition,
we have

Iλ(u, v) =

∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
Ω

1

q(x)
|∇v|q(x)dx−

∫
Ω

1

α(x)
|u|α(x)dx

+

∫
Ω

1

β(x)
|v|β(x)dx− λ

∫
Ω

F (x, u(x), v(x))dx.

Then, because of
∫
Ω
F (x, u(x), v(x))dx > 0, it’s clear that for

(ω, ω̃) ∈ X/ {(0, 0)} and any t > 1

Iλ(tω, tω̃) ≤ tp
+

∫
Ω

1

p(x)
|∇ω|p(x)dx+ tq

+

∫
Ω

1

q(x)
|∇ω̃|q(x)dx

−tα
−
∫
Ω

1

α(x)
|ω|α(x)dx− tβ

−
∫
Ω

1

β(x)
|ω̃|β(x)dx,

which tends to −∞ as t→ +∞ since α− > p+ and β− > q+.
On the other hand, for ‖(u, v)‖ = R is small enough and from (H4), we get

Iλ(u, v) ≥ 1

p+
|∇u|p

+

Lp(x)
+

1

q+
|∇v|q

+

Lq(x)
− 1

α−
|u|α

−

Lα(x) −
1

β−
|v|β

−

Lβ(x)

− λ|u|r
−
1

Lr1(x) − λ|v|
r−2
Lr2(x)

≥ 1

p+
‖u‖p

+

1,p(x) +
1

q+
‖v‖q

+

1,q(x) −
c

α−
‖u‖α

−

1,p(x) −
c

β−
‖v‖β

−

1,q(x)

− λc‖u‖r
−
1

1,p(x) − λc‖v‖
r−2
1,p(x)

≥ (
1

p+
‖u‖p

+

1,p(x) −
c

α−
‖u‖α

−

1,p(x) − λc‖u‖
r−1
1,p(x))

+ (
1

q+
‖v‖q

+

1,q(x) −
c

β−
‖v‖β

−

1,q(x) − λc‖v‖
r−2
1,q(x)).

So, it is easy to check that gi(R) > a > 0, i = 1, 2, where{
g1(t) = 1

p+ t
p+ − c

α− t
α− − λctr

−
1 ,

g2(t) = 1
q+ t

q+ − c
β− t

β− − λctr
−
2 ,

since r−1 , α
− > p+ and r−2 , β

− > q+. That means the existence of an element
(u0, v0) of X such that Iλ(u0, v0) < 0. Consequentely, the critical value is

C := inf
ξ∈Γ

sup
t∈[0,1]

Iλ(ξ(t)),
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where

Γ = {ξ : [0, 1]→ X; continuous and ξ(0) = (0, 0), ξ(1) = (u0, v0)}.

That concludes the proof. ut
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