Evaluation of Life Cycle Assessment (LCA) and sound absorption properties of composite materials made from coconut and sugarcane fibers

DOI: https://doi.org/10.3846/mla.2025.24828

Abstract

Agriculture plays a crucial part in the economic growth of several developing nations; however, it creates 1,300 million tons of waste each year, which generates environmental issues. Noise pollution, particularly in urban environments, is an expanding global health issue for emotional and physical health. Conventional synthetic sound absorption materials used for sound absorption pose environmental and health risks; therefore, agricultural wastes including coconut fiber and sugarcane fiber, are being sought for safer alternatives. Natural fibers as sustainable sound-absorbing solutions draw increasing research attention. This paper evaluates the Life Cycle Assessment of agriculture waste based on the SWM-GHG calculator to compare the waste management approaches by calculating the GHG emission related to the recycling and disposal of wastes from cradle to grave, and sound absorption properties of coconut and sugarcane fibers in composite materials. A non-toxic PVA binder was utilized to prepare samples with densities of 75, 100, and 125 kg/m3, and sound absorption was evaluated based on ISO 10534-2. The results show a cost-benefit trade-off in waste management where higher recycling reduces GHG emissions but increases costs; the Default Scenario results in the highest emissions (20,439 t CO2e/yr) at the lowest cost, and Scenario 3 results in the lowest emissions (5,148 t CO2e/yr) at the highest cost. Also, sugarcane fiber (75 kg/m³) achieved the highest absorption coefficient (0.94 at 800 Hz), while coconut fiber (125 kg/m³) reached 0.91 at 1000 Hz, making both suitable for acoustic applications, with coconut fiber excelling in mid to high frequencies and sugarcane fiber in low to mid frequencies, particularly at lower densities.

Article in English.

Kompozitinių medžiagų iš kokoso bei cukranendrių pluoštų gyvavimo ciklo analizė ir garso sugerties tyrimas

Santrauka

Žemės ūkis atlieka svarbų vaidmenį augant daugelio besivystančių šalių ekonomikai, tačiau kasmet sukuria apie 1300 milijonų tonų atliekų, kurios sukelia aplinkosauginių problemų. Triukšmo tarša, ypač urbanizuotose teritorijose, tampa vis aktualesne problema, darančia įtaką emocinei ir fizinei sveikatai. Įprastos sintetinės garsą sugeriančios medžiagos, naudojamos triukšmui slopinti, kelia pavojų aplinkai ir žmonių sveikatai, todėl ieškoma saugesnių alternatyvų iš žemės ūkio atliekų, tokių kaip kokoso ir cukranendrių pluoštas. Natūralūs pluoštai kaip tvarios garsą sugeriančios medžiagos vis labiau domina tyrėjus. Šiame darbe vertinamas žemės ūkio atliekų gyvavimo ciklas, siekiant palyginti skirtingas atliekų rūšis pagal šiltnamio efektą sukeliančių dujų (ŠESD) emisijas nuo žaliavos gavimo iki jų galutinio pašalinimo („nuo lopšio iki kapo“). Nagrinėjamos iš kokoso ir cukranendrių pluoštų pagamintų kompozitinių medžiagų kompozitų garso sugerties savybės remiantis ISO 10534-2. Mėginiams buvo naudotas netoksiškas PVA rišiklis, o jų tankiai buvo 75, 100 ir 125 kg/m³. Rezultatais nustatyta, kad atliekų tvarkymo srityje egzistuoja sąnaudų ir naudos balansas – perdirbimas sumažina ŠESD emisijas, tačiau didina išlaidas: pagal numatytąjį scenarijų gaunamos didžiausios emisijos (20 439 t CO₂ ekv./metus) už mažiausius kaštus, o pagal 3 scenarijų gaunamos mažiausios emisijos (5 148 t CO₂ ekv./metus). Be to, cukranendrių pluoštas (75 kg/m³) pasiekė didžiausią garso sugerties koeficientą (0,94 esant 800 Hz), o kokoso pluoštas (125 kg/m³) – 0,91 esant 1000 Hz. Kokoso pluoštas geriau sugeria vidutinių ir aukštų dažnių garsus, o cukranendrių pluoštas – žemų ir vidutinių dažnių, ypač esant mažesniam tankiui.

Reikšminiai žodžiai: gyvavimo ciklo vertinimas, ŠESD emisijos, kokoso pluoštas, cukranendrių pluoštas, garso sugerties koeficientas, triukšmo tarša.

Keywords:

Life Cycle Assessment, greenhouse gas emission, coconut fiber, sugarcane fiber, sound absorption coefficient, modelling noise pollution

How to Cite

Gboe, N. A., & Grubliauskas, R. (2025). Evaluation of Life Cycle Assessment (LCA) and sound absorption properties of composite materials made from coconut and sugarcane fibers. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 17. https://doi.org/10.3846/mla.2025.24828

Share

Published in Issue
September 18, 2025
Abstract Views
69

References

Aluko, E. O., & Nna, V. U. (2015). Impact of noise pollution on human cardiovascular system. International Journal of Tropical Disease & Health, 6(2), 35–43. https://doi.org/10.9734/IJTDH/2015/13791

Balbay, S., Gün, A. R., Üçgün, H., & Balbay, A. (2024). Green composite sound absorber production from orange peel waste for efficient sound insulation. Journal of Vibration Engineering & Technologies, 12, 3719–3728. https://doi.org/10.1007/s42417-023-01080-7

Brancoli, P., & Bolton, K. (2019). Life cycle assessment of waste management systems. Sustainable Resource Recovery and Zero Waste Approaches, 13(8), 23–33. https://doi.org/10.1016/B978-0-444-64200-4.00002-5

Duque-Acevedo, M., Belmonte-Ureña, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, Article e00902. https://doi.org/10.1016/j.gecco.2020.e00902

Gboe, N. A., & Grubliauskas, R. (2023). Agriculture waste as sound-absorbing material: Case study Liberia. In Proceedings of the 26th Conference for Junior Researchers “Science – Future of Lithuania” (pp. 13–19), Vilnius, Lithuania. https://doi.org/10.3846/da.2023.003

Hemmat, W., Hesam, A. M., & Atifnigar, H. (2023). Exploring noise pollution, causes, effects, and mitigation strategies: A review paper. European Journal of Theoretical and Applied Sciences, 1(5), 995–1005. https://doi.org/10.59324/ejtas.2023.1(5).86

International Organization for Standardization. (1998). Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part 2: Transfer-function method (ISO 10534-2). https://cdn.standards.iteh.ai/samples/22851/2b999ad0cc6c40cd84063eb81ab70944/ISO-10534-2-1998.pdf

International Organization for Standardization. (2023). Acoustics – Determination of acoustic properties in impedance tubes – Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance (ISO 10534-2). https://cdn.standards.iteh.ai/samples/81294/3a864844b77c40328e79fdd8b5c82257/ISO-10534-2-2023.pdf

Kolya, H., & Kang, C.-W. (2024). Herbal waste as a renewable resource for sound absorption: An eco-conscious approach for wall panel. Journal of Building Engineering, 82, Article 108249. https://doi.org/10.1016/j.jobe.2023.108249

Koop, S. H. A., & van Leeuwen, C. J. (2017). The challenges of water, waste and climate change in cities. Environment, Development and Sustainability, 19(2), 385–418. https://doi.org/10.1007/s10668-016-9760-4

Michel Devadoss, P. S., Pariatamby, A., Bhatti, M. S., Chenayah, S., & Shahul Hamid, F. (2021). Strategies for reducing greenhouse gas emissions from municipal solid waste management in Pakistan. Waste Management and Research, 39(7), 914–927. https://doi.org/10.1177/0734242X20983927

Obeng, G. Y., Amoah, D. Y., Opoku, R., Sekyere, C. K. K., Adjei, E. A., & Mensah, E. (2020). Coconut wastes as bioresource for sustainable energy: Quantifying wastes, calorific values and emissions in Ghana. Energies, 13(9), Article 2178. https://doi.org/10.3390/en13092178

Putra, A., Abdullah, Y., Efendy, H., Farid, W. M., Ayob, M. R., & Py, M. S. (2013). Utilizing sugarcane wasted fibers as a sustainable acoustic absorber. Procedia Engineering, 53, 632–638. https://doi.org/10.1016/j.proeng.2013.02.081

Renouf, M. A., Wegener, M. K., & Pagan, R. J. (2010). Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing. The International Journal of Life Cycle, 15, 927–937. https://doi.org/10.1007/s11367-010-0226-x

Shrestha, P. P., Ghimire, A., Dangi, M. B., & Urynowicz, M. A. (2023). Development of a municipal solid waste management life cycle assessment tool for Banepa municipality, Nepal. Sustainability, 15(13), Article 9954. https://doi.org/10.3390/su15139954

Ungureanu, N., Vlăduț, V., & Biriș, S.-Ș. (2022). Sustainable valorization of waste and by-products from sugarcane processing. Sustainability, 14(17), Article 11089. https://doi.org/10.3390/su141711089

Wang, N., He, Y., Zhao, K., Lin, X., He, X., Chen, A., Wu, G., Zhang, J., Yan, B., Luo, L., & Xu, D. (2024). Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: A review. Journal of Environmental Management, 354, Article 120337. https://doi.org/10.1016/j.jenvman.2024.120337

View article in other formats

CrossMark check

CrossMark logo

Published

2025-09-18

Issue

Section

Environmental Engineering / Aplinkos inžinerija

How to Cite

Gboe, N. A., & Grubliauskas, R. (2025). Evaluation of Life Cycle Assessment (LCA) and sound absorption properties of composite materials made from coconut and sugarcane fibers. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 17. https://doi.org/10.3846/mla.2025.24828

Share