Artificial intelligence (AI) for innovative products development

DOI: https://doi.org/10.3846/mla.2025.24055

Abstract

In today’s economic environment, where technological progress is rapid and product life cycles are getting shorter, companies not only need an innovative product development strategy but also an understanding of the factors that determine the success of new products in the market. One solution is the development of innovative products using artificial intelligence. This article aims to investigate how the integration of artificial intelligence affects the process of innovative product development. The article explores the concept of innovation and artificial intelligence, the link between these processes and classification models. A text analysis is carried out according to the developed research methodology. Based on the literature analysis, a popular model of innovative product development is selected. By integrating artificial intelligence into this model, various aspects of its application are examined, such as process automation, data analysis techniques and decision-making improvement. Links between the chosen model and the integration of artificial intelligence are found. A simulation approach is used to propose a structured model to assess the impact of AI on innovative product development. This approach helps to understand the relationships and interconnections between the results and the elements of the empirical study. At the end of the study, a simulation approach is carried out to test the proposed structured model. The paper concludes with conclusions and suggestions.

Article in Lithuanian.

Dirbtinio intelekto (DI) taikymas inovatyviems produktams kurti

Santrauka

Dabartinėje ekonominėje aplinkoje, kurioje technologinė pažanga vyksta labai sparčiai, o produktų gyvavimo ciklas trumpėja, įmonėms reikia ne tik inovatyvios produktų kūrimo strategijos, bet ir supratimo apie veiksnius, lemiančius naujų produktų sėkmę rinkoje. Vienas iš sprendimo būdų – inovatyvaus produkto kūrimas pasitelkiant dirbtinį intelektą. Šio straipsnio tikslas – ištirti kaip dirbtinio intelekto integravimas veikia inovatyvaus produkto kūrimo procesą. Straipsnyje analizuojama inovacijų ir dirbtinio intelekto samprata, sąsaja tarp šių procesų ir klasifikavimo modeliai. Remiantis sukurta tyrimo metodologija, atliekama mokslinės literatūros analizė, o pagal ją pasirenkamas populiarus inovatyvių produktų kūrimo modelis. Į šį modelį integruojant dirbtinį intelektą, nagrinėjami įvairūs jo pritaikymo aspektai, tokie kaip procesų automatizavimas, duomenų analizės metodai ir sprendimų priėmimo tobulinimas. Identifikuojamos sąsajos tarp pasirinkto modelio elementų ir dirbtinio intelekto integravimo galimybių. Siekdami pasiūlyti struktūruotą modelį, įvertinantį dirbtinio intelekto įtaką inovatyvių produktų kūrimo procesui, autoriai taiko modeliavimo metodą. Jis padeda suprasti empirinio tyrimo rezultatų ir elementų, ryšius bei sąsajas. Remiantis šiuo metodu, sukuriamas modelis. Tyrimo pabaigoje, norint patikrinti pasiūlytą struktūrizuotą modelį, taikomas simuliacijos metodas. Straipsnio pabaigoje pateiktos tyrimo išvados ir rekomendacijos.

Reikšminiai žodžiai: dirbtinis intelektas, dirbtinio intelekto integravimas, inovacijų strategija, inovatyvus produktas, inovatyvus produktų kūrimas, simuliacijos metodas.

Keywords:

artificial intelligence, artificial intelligence integration, innovation strategy, innovative product, innovative product development, simulation method

How to Cite

Alčauskas, D. (2025). Artificial intelligence (AI) for innovative products development. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 17. https://doi.org/10.3846/mla.2025.24055

Share

Published in Issue
December 8, 2025
Abstract Views
35

References

Benbya, H., Davenport, T. H., & Pachidi, S. (2020). Artificial intelligence in organizations: Current state and future opportunities. SSRN. https://doi.org/10.2139/ssrn.3741983

Brown, S. L., & Eisenhardt, K. M. (1995). Product development: Past research, present findings, and future directions. The Academy of Management Review, 20(2), 343–378. https://doi.org/10.5465/amr.1995.9507312922

Chandra, D. (2019). Role of artificial intelligence in strengthening democratic institution in India. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3508720

Chesbrough, H. (2010). Business model innovation: Opportunities and barriers. Long Range Planning, 43(2–3), 354–363. https://doi.org/10.1016/j.lrp.2009.07.010

Cooper, R. G. (2008). Perspective: The Stage‐Gate® idea‐to‐launch process—update, what’s new, and nexgen systems. Journal of Product Innovation Management, 25(3), 213–232. https://doi.org/10.1111/j.1540-5885.2008.00296.x

Cooper, R. G., & Kleinschmidt, E. J. (2007). Winning businesses in product development: The critical success factors. Research-Technology Management, 50(3), 52–66. https://doi.org/10.1080/08956308.2007.11657441

Eurostat. (2024). Manufacturing sector share in GDP. https://ec.europa.eu/eurostat

Fujitsu. (2017). AI-powered design innovation. Fujitsu Scientific & Technical Journal, 53(4).

Fulkerson, B. (1995). Machine learning, neural and statistical classification. Technometrics, 37(4), 459. https://doi.org/10.2307/1269742

Ghosh, S. (2022). How AI capabilities influence data-driven business model innovation [Conference presentation]. World Open Innovation Conference, Eindhoven, the Netherlands.

Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann Publishers.

Hargadon, A. (2004). How breakthroughs happen: The surprising truth about how companies innovate. Choice Reviews Online, 41(10). https://doi.org/10.5860/choice.41-6004

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285. https://doi.org/10.1613/jair.301

Montagna F. (2023). Optimizing product development and innovation processes with artificial intelligence [Thesis, Politecnico di Torino]. https://webthesis.biblio.polito.it/27710/

Nolan, A. (2021). Artificial intelligence, its diffusion and uses in manufacturing (OECD Going Digital Toolkit Notes, No. 12). OECD Publishing. https://doi.org/10.1787/249e2003-en

Plathottam, S. J., Rzonca, A., Lakhnori, R., & Iloeje, C. O. (2023). A review of artificial intelligence applications in manufacturing operations. Journal of Advanced Manufacturing and Processing, 5(3), Article e10159. https://doi.org/10.1002/amp2.10159

PwC. (2018). Harnessing artificial intelligence for the earth. https://www.pwc.com/gx/en/sustainability/assets/ai-for-the-earth-jan-2018.pdf

Ritchie, H., & Roser, M. (2019). Productivity: Output per hour worked. Our World in Data. https://ourworldindata.org/grapher/labor-productivity-per-hour-pennworldtable

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), Article 60. https://doi.org/10.1007/s42979-021-00592-x

Tzokas, N., Hultink, E. J., & Hart, S. (2003). Navigating the new product development process. Industrial Marketing Management, 33(7), 619–626. https://doi.org/10.1016/j.indmarman.2003.09.004

Valstybės duomenų agentūra. (2021). Dirbtinis intelektas 2021 m. Oficialiosios statistikos portalas. https://osp.stat.gov.lt/skaitmenine-ekonomika-ir-visuomene-lietuvoje-2021/dirbtinis-intelektas

World Bank. (2019). Artificial Intelligence: Investment trends and selected industry uses. http://documents.worldbank.org/curated/en/617511573040599056

World Economic Forum. (2023). Annual report 2023–2024. https://www.weforum.org/publications/annual-report-2023-2024/

Zamani, E. D., Smyth, C., Gupta, S., & Dennehy, D. (2022). Artificial intelligence and big data analytics for supply chain resilience: A systematic literature review. Annals of Operations Research, 327(2), 605–632. https://doi.org/10.1007/s10479-022-04983-y

Zhang, H., Zhang, X., & Song, M. (2021). Deploying AI for new product development success. Research-Technology Management, 64(5), 50–57. https://doi.org/10.1080/08956308.2021.1942646

View article in other formats

CrossMark check

CrossMark logo

Published

2025-12-08

Issue

Section

Mechanics and Materials Engineering / Mechanika ir medžiagų inžinerija

How to Cite

Alčauskas, D. (2025). Artificial intelligence (AI) for innovative products development. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 17. https://doi.org/10.3846/mla.2025.24055

Share