Investigation of the thermal conductivity of RT58 phase change material during the charging process of a thermal storage tank under natural convection conditions

DOI: https://doi.org/10.3846/mla.2025.23942

Abstract

As global energy demand grows, more and more attention is being paid to efficient energy storage solutions, among which Phase Change Materials (PCMs) are particularly promising. They allow efficient thermal energy storage by using the latent heat that is absorbed or released during the transformation of the aggregate state. One of the most important properties of PCM for efficient heat transfer is the thermal conductivity. Unfortunately, it is not high for organic materials. This paper presents a study of RT58 PCM, presenting an experimental evaluation of the thermal conductivity of this material and the application of the material in a storage tank. The analytical evaluation focuses on the heat transfer under natural convection conditions, where the aim is to assess the influence of the thermal conductivity of the PCM on the amount of energy stored in the storage tank. In this case, the temperature of the heating surface, the magnitude of the thermal conductivity coefficient and the choice of the other PCM are considered. The experimental results allowed to refine the value of the thermal conductivity coefficient of the RT58 material used (0.188 W/(mK)) and the analytical calculations allowed to trend towards an increase of the heat exchange efficiency of the system with the PCM.

Article in Lithuanian.

RT58 fazinio virsmo medžiagos šilumos laidumo koeficiento tyrimas natūralios konvekcijos sąlygomis akumuliacinės talpos įkrovimo metu

Santrauka

Didėjant pasaulinei energijos paklausai, vis daugiau dėmesio skiriama efektyviems energijos kaupimo sprendimams, tarp kurių itin perspektyvios yra fazinio virsmo medžiagos (FVM). Jos leidžia efektyviai saugoti šiluminę energiją naudojant latentinę šilumą, kuri sugeriama arba išskiriama agregatinės būsenos virsmo metu. Viena iš svarbiausių FVM savybių efektyviems šilumos mainams yra šilumos laidumo koeficientas. Deja, organinių medžiagų atveju jis nėra aukštas. Šiame straipsnyje pateikiama RT58 FVM tyrimas, kuriame pristatomas eksperimentinis šios medžiagos šilumos laidumo įvertinimas ir medžiagos pritaikymas akumuliacinėje talpoje. Atliekant analitinį vertinimą nagrinėjami šilumos mainai natūralios konvekcijos sąlygomis, kai siekiama įvertinti FVM šilumos laidumo įtaką sukauptos energijos kiekiui akumuliacinėje talpoje. Šiuo atveju nagrinėjama šildomojo paviršiaus temperatūra, šilumos laidumo koeficiento dydis ir kitos FVM pasirinkimas. Eksperimentiniai rezultatai leido patikslinti naudojamos RT58 medžiagos šilumos laidumo koeficiento vertę (0,188 W/(mK), o analitiniai skaičiavimai – tendencijas didinti sistemos su FVM šilumos mainų efektyvumą.

Reikšminiai žodžiai: fazinio virsmo medžiaga, natūrali konvekcija, šilumos atidavimas, šilumos laidumo koeficientas.

Keywords:

phase change material, natural convection, heat transfer, thermal conductivity coefficient

How to Cite

Streckienė, G., Viganauskas, G., Rynkevič, E., & Banuškevičius, A. (2025). Investigation of the thermal conductivity of RT58 phase change material during the charging process of a thermal storage tank under natural convection conditions. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 17. https://doi.org/10.3846/mla.2025.23942

Share

Published in Issue
August 7, 2025
Abstract Views
58

References

Acheampong, A. O. (2018). Economic growth, CO2 emissions and energy consumption: What causes what and where? Energy Economics, 74, 677–692. https://doi.org/10.1016/J.ENECO.2018.07.022

Bentivoglio, F., Rouge, S., Soriano, O., & Tempass de Sousa, A. (2021). Design and operation of a 180 kWh PCM heat storage at the Flaubert substation of the Grenoble urban heating network. Applied Thermal Engineering, 185, Article 116402. https://doi.org/10.1016/j.applthermaleng.2020.116402

El Idi, M. M., & Karkri, M. (2020). Heating and cooling conditions effects on the kinetic of phase change of PCM embedded in metal foam. Case Studies in Thermal Engineering, 21, Article 100716. https://doi.org/10.1016/j.csite.2020.100716

Esfandeh, S. (2024). Introduction to phase change materials. In Advanced materials-based thermally enhanced phase change materials (pp. 1–17). Elsevier. https://doi.org/10.1016/B978-0-443-21574-2.00002-2

Faraj, K., Khaled, M., Faraj, J., Hachem, F., & Castelain, C. (2021). A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications. Journal of Energy Storage, 33, Article 101913. https://doi.org/10.1016/j.est.2020.101913

Koohi-Fayegh, S., & Rosen, M. A. (2020). A review of energy storage types, applications and recent developments. Journal of Energy Storage, 27, Article 101047. https://doi.org/10.1016/j.est.2019.101047

Li, Y., Hu, B., Wang, D., Liu, H., Liu, Y., & Haghighat, F. (2023). Enhancing the performance of solar water heating systems: Application of double-layer phase change materials. Renewable Energy, 219, Article 119367. https://doi.org/10.1016/j.renene.2023.119367

Lloyd, J. R., & Moran, W. R. (1974). Natural convection adjacent to horizontal surface of various planforms. Journal of Heat Transfer, 96(4), 443–447. https://doi.org/10.1115/1.3450224

Noohi, Z., Nosouhian, S., Niroumand, B., & Timelli, G. (2022). Use of low melting point metals and alloys (Tm < 420 °C) as phase change materials: A review. Metals, 12(6), Article 945. https://doi.org/10.3390/met12060945

Okogeri, O., & Stathopoulos, V. N. (2021). What about greener phase change materials? A review on biobased phase change materials for thermal energy storage applications. International Journal of Thermofluids, 10, Article 100081. https://doi.org/10.1016/j.ijft.2021.100081

Pakalka, S., Donėlienė, J., Rudzikas, M., Valančius, K., & Streckienė, G. (2024). Development and experimental investigation of full-scale phase change material thermal energy storage prototype for domestic hot water applications. Journal of Energy Storage, 80, Article 110283. https://doi.org/10.1016/j.est.2023.110283

Rubitherm. (2025). FVM medžiagos. https://www.rubitherm.eu/en/index.php/productcategory/organische-pcm-rt

Streckienė, G., Martinaitis, V. ir Šiupšinskas, G. (2011). Šilumos akumuliacinės talpos parinkimo ekonominis vertinimas, esant skirtingai mažos galios kogeneracinės jėgainės veikimo strategijai. Energetika, 57(1), 1–10. https://doi.org/10.6001/energetika.v57i1.2038

Teamah, H. M. (2023). Introduction and history of phase change materials’ heat transfer. In Phase change materials for heat transfer (pp. 1–26). Elsevier. https://doi.org/10.1016/B978-0-323-91905-0.00003-4

Zakarka, M., Skuodis, Š., Šiupšinskas, G., & Bielskus, J. (2021). Compressive strength and thermal properties of sand–bentonite mixture. Open Geosciences, 13(1), 988–998. https://doi.org/10.1515/geo-2020-0289

View article in other formats

CrossMark check

CrossMark logo

Published

2025-08-07

Issue

Section

Environmental Engineering / Aplinkos inžinerija

How to Cite

Streckienė, G., Viganauskas, G., Rynkevič, E., & Banuškevičius, A. (2025). Investigation of the thermal conductivity of RT58 phase change material during the charging process of a thermal storage tank under natural convection conditions. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 17. https://doi.org/10.3846/mla.2025.23942

Share