Experimental analysis of hydrogen sulfide removal from biogas using a biofilter containing cellular concrete waste and biochar
DOI: https://doi.org/10.3846/mla.2025.23937Abstract
This study investigates the removal efficiency of hydrogen sulfide (H₂S) from biogas using a biofilter packed with cellular lightweight concrete (CLC) waste and biochar. A laboratory-scale biofilter was designed and tested under varying operational and environmental conditions, including inlet H₂S concentrations (100–2000 ppm), gas flow rates (0.2–1.0 L/min), temperature (25–35 °C), and humidity (70–90%). The results demonstrated that H₂S removal efficiency reached 95% at low air flow rates and 91% under low H₂S concentrations. In comparison, efficiency declined to 88% at high air flow rates and 87% at high H₂S concentrations. The combination of biochar’s adsorption properties and Fe₂CO₃-modified CLC waste’s catalytic oxidation contributed to the biofilter’s high efficiency and stability. These findings suggest that hybrid biofilters incorporating waste-derived materials provide an environmentally sustainable and cost-effective alternative for biogas purification compared to conventional chemical and physical methods.
Article in English.
Eksperimentinis biodujų valymo nuo sieros vandenilio tyrimas, taikant biofiltrą su akytojo betono atliekų ir bioanglies įkrovomis
Santrauka
Šiame tyrime nagrinėjamas sieros vandenilio (H₂S) šalinimo iš biodujų efektyvumas, naudojant biofiltrą, užpildytą akytojo lengvojo betono atliekomis ir bioanglimi. Laboratorinis biofiltras buvo suprojektuotas ir išbandytas esant skirtingoms eksploatacinėms sąlygoms: keičiant pradinę H₂S koncentraciją (100–2000 ppm), dujų srautų greitį (0,2–1,0 L/min), temperatūrą (25–35 °C) ir drėgmę (70–90 %). Tyrimo rezultatai parodė, kad H₂S šalinimo efektyvumas siekė 95 % esant mažiems oro srautams ir esant nedidelėms pradinėms H₂S koncentracijoms. Palyginimui, kai dideli oro srautai – efektyvumas sumažėjo iki 88 %, o padidėjus H₂S koncentracijoms – efektyvumas sumažėjo iki 87 %. Aukštą biofiltro efektyvumą ir stabilumą lėmė bioanglies adsorbcinės savybės bei Fe₂CO₃ modifikuotų akytojo lengvojo betono atliekų katalizinė oksidacija. Tyrimo išvados leidžia teigti, kad hibridiniai biofiltrai, kuriuose naudojamos atliekų pagrindu gautos medžiagos, yra aplinkai tvari ir ekonomiškai efektyvi biodujų valymo alternatyva, palyginti su įprastais cheminiais ir fizikiniais metodais.
Reikšminiai žodžiai: sieros vandenilio šalinimas, biofiltras, bioanglis, akytojo betono atliekos, mikrobiologinė desulfurizacija, biodujų valymas.
Keywords:
hydrogen sulfide removal, biofilter, biochar, cellular concrete (CLC) waste, microbial desulfurization, biogas purificationHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Appala, V. N. S. G., Pandhare, N. N., & Bajpai, S. (2022). Mathematical models for optimization of anaerobic digestion and biogas production. In Y. K. Nandabalan, V. K. Garg, N. K. Labhsetwar, & A. Singh (Eds.), Zero waste biorifinery (pp. 575–591). Springer. https://doi.org/10.1007/978-981-16-8682-5_21
Alkhatib, I. I. I., Khalifa, O., Bahamon, D., Abu-Zahra, M. R. M., & Vega, L. F. (2021). Sustainability criteria as a game changer in the search for hybrid solvents for CO2 and H2S removal. Separation and Purification Technology, 277, Article 119516. https://doi.org/10.1016/j.seppur.2021.119516
Bu, H., Carvalho, G., Huang, C., Sharma, K. R., Yuan, Z., Song, Y., Bond, P., Keller, J., Yu, M., & Jiang, G. (2021). Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. Chemosphere, 291, Article 132723. https://doi.org/10.1016/j.chemosphere.2021.132723
González-Cortés, J. J., Almenglo, F., Ramírez, M., & Cantero, D. (2021). Simultaneous removal of ammonium from landfill leachate and hydrogen sulfide from biogas using a novel two-stage oxic-anoxic system. Science of the Total Environment, 750, Article 141664. https://doi.org/10.1016/j.scitotenv.2020.141664
Choudhury, A., & Lansing, S. (2021). Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system. Journal of Environmental Chemical Engineering, 9(1), Article 104837. https://doi.org/10.1016/j.jece.2020.104837
Santos-Clotas, E., Cabrera-Codony, A., Comas, J., & Martín, M. J. (2020). Biogas purification through membrane bioreactors: Experimental study on siloxane separation and biodegradation. Separation and Purification Technology, 238, Article 116440. https://doi.org/10.1016/j.seppur.2019.116440
Cano, P. I., Almenglo, F., Ramírez, M., & Cantero, D. (2021). Integration of a nitrification bioreactor and an anoxic biotrickling filter for simultaneous ammonium-rich water treatment and biogas desulfurization. Chemosphere, 284, Article 131358. https://doi.org/10.1016/j.chemosphere.2021.131358
Danila, V., Zagorskis, A., & Januševičius, T. (2022). Effects of water content and irrigation of packing materials on the performance of biofilters and biotrickling filters: A review. Processes, 10(7), Article 1304. https://doi.org/10.3390/pr10071304
De Souza, F. M., Kahol, P. K., & Gupta, K. R. (2021). Introduction to polyurethane chemistry. American Chemical Society. https://doi.org/10.1021/bk-2021-1380.ch001
Das, J., Ravishankar, H., & Lens, P. N. L. (2022). Biological biogas purification: Recent developments, challenges and future prospects. Journal of Environmental Management, 304, Article 114198. https://doi.org/10.1016/j.jenvman.2021.114198
Ghimire, A., Gyawali, R., Lens, P. N., L., & Lohani, S. P. (2021). Technologies for removal of hydrogen sulfide (H2S) from biogas. In Emerging technologies and biological systems for biogas upgrading (pp. 295–320). Elsevier. https://doi.org/10.1016/B978-0-12-822808-1.00011-8
Haosagul, S., Prommeenate, P., Hobbs, G., & Pisutpaisal, N. (2020). Sulfur-oxidizing bacteria in full-scale biogas cleanup system of ethanol industry. Renewable Energy, 150, 965–972. https://doi.org/10.1016/j.renene.2019.11.140
Jiang, X., Wu, J., Jin, Z., Yang, S., & Shen, L. (2020). Enhancing the removal of H2S from biogas through refluxing of outlet gas in biological bubble-column. Bioresource Technology, 299, Article 122621. https://doi.org/10.1016/j.biortech.2019.122621
Jedynak, K., & Charmas, B. (2023). Adsorption properties of biochars obtained by KOH activation. Adsorption, 30, 167–183. https://doi.org/10.1007/s10450-023-00399-7
Khan, M. U., EnLee, J. T., Bashir, M. A., Dissanayake, P. D., WahTong, Y. S., Shariati, M. A., Wu, S., & Ahring, B. K. (2021). Current status of biogas upgrading for direct biomethane use: A review. Renewable and Sustainable Energy Reviews, 149, Article 111343. https://doi.org/10.1016/j.rser.2021.111343
Lee, J. T. E., Ok, Y. S., Song, S., Dissanayake, P. D., Tian, H., Tio, Z. K., Cui, R., Lim, E. Y., Jong, M. C., Hoy, S. H., Lum, T. Q. H., Tsui, T. H., Yoon, C. S., Dai, Y., Wang, C. W., Tan, H. T. W., & Tong, Y. W. (2021). Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment. Bioresource Technology, 333, Article 125190. https://doi.org/10.1016/j.biortech.2021.125190
Lin, Q., Zhang, J., Yin, L., Liu, H., Zuo, W., & Tian, Y. (2021). Relationship between heavy metal consolidation and H2S removal by biochar from microwave pyrolysis of municipal sludge: Effect and mechanism. Environmental Science and Pollution Research, 28, 27694–27702. https://doi.org/10.1007/s11356-021-12631-4
Mohammadi, K., & Vaiškūnaitė, R. (2023). Analysis and evaluation of the biogas purification technologies from H2S. Science – Future of Lithuania, 15, 1–7. https://doi.org/10.3846/mla.2023.17242
Mitchell, K., Beesley, L., Šípek, V., & Trakal, L. (2022). Biochar and its potential to increase water, trace element, and nutrient retention in soils. In Biochar in agriculture for achieving sustainable development goals (pp. 25–33). Elsevier. https://doi.org/10.1016/B978-0-323-85343-9.00008-2
Nhut, H. H., Thanh, V. T., & Le, L. T. (2020). Removal of H2S in biogas using biotrickling filter: Recent development. Process Safety and Environmental Protection, 144, 297–309. https://doi.org/10.1016/j.psep.2020.07.011
Pudi, A., Rezaei, M., Signorini, V., Andersson, M. P., Baschetti, M. G., & Mansouri, S. S. (2022). Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends. Separation and Purification Technology, 298, Article 121448. https://doi.org/10.1016/j.seppur.2022.121448
Poser, M., Silva, L. R. D. E., Peu, P., Couvert, A., & Dumont, E. (2023). Cellular concrete waste: An efficient new way for H2S removal. Separation and Purification Technology, 309, Article 123014. https://doi.org/10.1016/j.seppur.2022.123014
Shi, M., Xiong, W., Zhang, X., Ji, J., Hu, X., Tu, Z., & Wu, Y. (2022). Highly efficient and selective H2S capture by task-specific deep eutectic solvents through chemical dual-site absorption. Separation and Purification Technology, 283, Article 120167. https://doi.org/10.1016/j.seppur.2021.120167
Talaiekhozani, A., Eskandari, Z., Talaei, M. R., & Salari, M. (2017). Hydrogen sulfide and organic compounds removal in municipal wastewater using ferrate (VI) and ultraviolet radiation. Environmental Health Engineering and Management Journal, 4(1), 7–14. https://doi.org/10.15171/EHEM.2017.02
Torres, R. A., Marín, D., Rodero, M. D. R., Pascual, C., Sanchez, A. G., Crespo, I. G., Lebrero, R., & Torre, R. M. (2020). Biogas treatment for H2S, CO2, and other contaminants removal. In From biofiltration to promising options in gaseous fluxes biotreament (pp. 153–176). Elsevier. https://doi.org/10.1016/B978-0-12-819064-7.00008-X
Vaiškūnaitė, R. (2020). Cleaning of H2S from polluted air using peat biofilter. Science – Future of Lithuania, 12, 1–5. https://doi.org/10.3846/mla.2020.13081
Wang, S., Nam, H., Lee, D., & Nam, H. (2022). H2S gas adsorption study using copper impregnated on KOH activated carbon from coffee residue for indoor air purification. Journal of Environmental Chemical Engineering, 10(6), Article 108797. https://doi.org/10.1016/j.jece.2022.108797
Watsuntorn, W., Khanongnuch, R., Chulalaksananuku, W., Rene, E. R., & Lens, P. N. L. (2020). Resilient performance of an anoxic biotrickling filter for hydrogen sulfide removal from a biogas mimic: Steady, transient state and neural network evaluation. Journal of Cleaner Production, 249, Article 119351. https://doi.org/10.1016/j.jclepro.2019.119351
Wu, J., Jiang, X., Jin, Z., Yang, S., & Zhang, J. (2020). The performance and microbial community in a slightly alkaline biotrickling filter for the removal of high-concentration H2S from biogas. Chemosphere, 249, Article 126127. https://doi.org/10.1016/j.chemosphere.2020.126127
Xia, G., Zhou, X., Hu, J., Sun, Z., Yao, J., Chen, D., & Wang, J. (2019). Simultaneous removal of carbon disulfide and hydrogen sulfide from viscose fibre waste gas with a biotrickling filter in pilot scale. Journal of Cleaner Production, 230, 21–28. https://doi.org/10.1016/j.jclepro.2019.05.097
Xu, Y., Chen, Y., Ma, C., Qiao, W., Wang, J., & Ling, L. (2022). Functionalization of activated carbon fiber mat with bimetallic active sites for NH3 and H2S adsorption at room temperature. Separation and Purification Technology, 303, Article 122335. https://doi.org/10.1016/j.seppur.2022.122335
Ying, S., Kong, X., Cai, Z., Man, Z., Xin, Y., & Liu, D. (2020). Interactions and microbial variations in a biotrickling filter treating low concentrations of hydrogen sulfide and ammonia. Chemosphere, 255, Article 126931. https://doi.org/10.1016/j.chemosphere.2020.126931
Zhang, X., Lawan, I., Danhassan, U. A., He, Y., Qi, R., Wu, A., Sheng, K., & Lin, H. (2022). Advances in technologies for in situ desulfurization of biogas. Advances in Bioenergy, 7, 99–137. https://doi.org/10.1016/bs.aibe.2022.05.001
Zhang, Y., Oshita, K., Kusakabe, T., Takaoka, M., Kawasaki, Y., Minami, D., & Tanaka, T. (2020). Simultaneous removal of siloxanes and H2S from biogas using an aerobic biotrickling filter. Journal of Hazardous Materials, 391, Article 122187. https://doi.org/10.1016/j.jhazmat.2020.122187
Zhang, Y., Kawasaki, Y., Oshita, K., Takaoka, M., Minami, D., Inoue, G., & Tanaka T. (2021). Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas. Renewable Energy, 168, 119–130. https://doi.org/10.1016/j.renene.2020.12.058
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.