Share:


Torrefaction of oil palm fronds (OPF) as a potential feedstock for energy production processes

    Thuraiya Thaim Affiliation
    ; Ruwaida Abdul Rasid Affiliation
    ; Wan Muhamad Syafiq Wan Ismail Affiliation

Abstract

Oil palm fronds (OPF) and trunks contribute the highest biomass availability compared with other oil palm wastes. At the moment, they are usually left on the ground around the plantation area to decompose naturally and fertilize the soil. Previous researchers have focused on torrefaction of wood residues and other agricultural biomass with less attention has been paid to the utilization of Malaysia’s biomass such as OPF. Therefore, in this study, torrefaction of OPF was conducted in a tubular reactor at temperatures between 200 and 300 °C and residence time of 30 min. The results reveal an improved heating value as the temperature was increased, from 16.81 to 20.32 MJ/kg after the torrefaction process. The van Krevelen diagram also proved that torrefaction OPF could be classified as an intermediate, between raw OPF and coal. This proves the potential of OPF as one of the alternative feedstocks for energy production process through torrefaction.

Keyword : torrefaction, biomass, oil palm frond (OPF), waste management technology, renewable energy

How to Cite
Thaim, T., Rasid, R. A., & Wan Ismail, W. M. S. (2019). Torrefaction of oil palm fronds (OPF) as a potential feedstock for energy production processes. Journal of Environmental Engineering and Landscape Management, 27(2), 64-71. https://doi.org/10.3846/jeelm.2019.9315
Published in Issue
Apr 2, 2019
Abstract Views
1384
PDF Downloads
811
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abdul Rasid, R., & Yusoff, M. H. M. (2017). The potential of CO2 torrefaction as biomass Pre-treatment method. Indian Journal of Science and Technology, 10(7), 1-5. https://doi.org/10.17485/ijst/2017/v10i7/111462

Barta-Rajnai, E., Jakab, E., Sebestyén, Z., May, Z., Barta, Z., Wang, L., Skreiberg, Ø., Grønli, M., & Czegeny, Z. (2016). Comprehensive compositional study of torrefied wood and herbaceous materials by chemical analysis and thermoanalytical methods. Energy Fuels, 30(10), 8019-8030. https://doi.org/10.1021/acs.energyfuels.6b01030

Bridgwater, A. V., Toft, A. J., & Brammer, J. G. (2002). A technoeconomic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable and Sustainable Energy Reviews, 6(3), 181-246. https://doi.org/10.1016/S1364-0321(01)00010-7

Cai, W., Fivga, A., Kaario, O., & Liu, R. (2017). Effects of torrefaction on the physicochemical characteristics of sawdust and rice husk and their pyrolysis behaviour by thermogravimetric analysis and pyrolysis-gas chromatography/mass spectrometry. Energy Fuels, 31(2), 1544-1554. https://doi.org/10.1021/acs.energyfuels.6b01846

Cellatoglu, N., & Ilkan, M. (2015). Torrefaction of solid olive mill residues. Bioresources, 10, 5876-5889. https://doi.org/10.15376/biores.10.3.5876-5889

Chen, W.-H., Chua, Y.-S., & Lee, W.-J. (2017). Influence of biosolution pretreatment on the structure, reactivity and torrefaction of bamboo. Energy Conversion and Management, 141, 244-253. https://doi.org/10.1016/j.enconman.2016.08.043

Conag, A. T., Villahermosa, J. E. R., Cabatingan, L. K., & Go, A. W. (2018). Energy densification of sugarcane leaves through torrefaction under minimized oxidative torrefaction. Energy for Sustainable Development, 42, 160-169.

Doddapaneni, T. R., Praveenkumar, R., Tolvanen, H., Palmroth, M. R., Konttinen, J., & Rintala, J. (2017). Anaerobic batch conversion of pine wood torrefaction condensate. Bioresource Technology, 225, 299-307. https://doi.org/10.1016/j.biortech.2016.11.073

Fahmi, R., Bridgwater, A. V., Donnison, I., & Yates, N. (2008). The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel, 87(7), 1230-1240. https://doi.org/10.1016/j.fuel.2007.07.026

Guangul, F. M., Sulaiman, S. A., & Ramli, A. (2012). Gasifier selection, design and gasification of oil palm fronds with preheated and unheated gasifying air. Bioresource Technology, 126, 224-232. https://doi.org/10.1016/j.biortech.2012.09.018

Huang, Y. F., Suang, H. T., Chiueh, P. T., & Lo, S. L. (2017). Microwave torrefaction of sewage sludge and leucaena. Journal of the Taiwan Institute of Chemical Engineers, 70, 236-243. https://doi.org/10.1016/j.jtice.2016.10.056

Irawan, A., Latifah Upe, S., & Meity Dwi, I. P. (2017). Effect of torrefaction process on the coconut shell energy content for solid fuel. AIP Conference Proceedings, 1826, 020010. https://doi.org/10.1063/1.4979226

Iroba, K. L., Baik, O. D., & Tabil, L. G. (2017). Torrefaction of biomass from municipal solid waste fractions I: Temperature profiles, moisture content, energy consumption, mass yield and thermochemical properties. Biomass and Bioenergy, 105, 320-330. https://doi.org/10.1016/j.biombioe.2017.07.009

Kamalrudin, M. S., & Abdullah, R. (2014). Malaysian palm oil – moving ahead to sustainable production growth. Oil Palm Industry Economic Journal, 14, 24-33.

Li, M. F., Li, X., Bian, J., & Chen, C. Z. (2015). Effect of temperature and holding time on bamboo torrefaction. Biomass and Bioenergy, 83, 366-372. https://doi.org/10.1016/j.biombioe.2015.10.016

Louwes, A., Basile, L., Yukananto, R., Bhagwandas, J., Bramer, E. A., & Brem, G. (2017). Torrefied biomass as feed for fast pyrolysis: An experimental study and chain analysis. Biomass and Bioenergy, 105, 116-126. https://doi.org/10.1016/j.biombioe.2017.06.009

Macedo, L. A., Commandré, J.-M., Rousset, P., Valette, J., & Pétrissans, M. (2018). Influence of potassium carbonate addition on the condensable species released during wood torrefaction. Fuel Processing Technology, 168, 248-257. https://doi.org/10.1016/j.fuproc.2017.10.012

Mohd Faizal, H., Shamsuddin, H. S., Heiree, M. H. M., Hanaffi, M. F. M. A., Abdul Rahman, M. R., Mizanur Rahman, Md., & Latiff, Z. A. (2018). Torrefaction of densified mesocarp fiber and palm kernel shell. Renewable Energy, 122, 419-428. https://doi.org/10.1016/j.renene.2018.01.118

MPOB. (2018). Retrieved August 17, 2018 from https://bepi.mpob.gov.my/index.php/en/

Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). More efficient biomass gasification via torrefaction. Energy, 31, 3458-3470. https://doi.org/10.1016/j.energy.2006.03.008

Rousset, P., Macedo, L., Commandré, J. M., & Moreira, A. (2012). Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. Journal of Analytical and Applied Pyrolysis, 96, 86-91. https://doi.org/10.1016/j.jaap.2012.03.009

Recari, J., Berrueco, C., Puy, N., Alier, S., Bartroli, J., & Farriol, X. (2017). Torrefaction of a solid recoverd fuel (SRF) to improve the fuel properties for gasification processes. Applied Energy, 203, 177-188. https://doi.org/10.1016/j.apenergy.2017.06.014

Rodriguez, I. I., Martin-Lara, M. A., Blazquez, G., & Perez, A. (2017). Effects of torrefaction conditions on greenhouse crop residue: Optimization of conditions to upgrade solid characteristics. Bioresource Technology, 244, 741-749. https://doi.org/10.1016/j.biortech.2017.08.031

Sabil, K. M., Aziz, M. A., Lal, B., & Uemura, Y. (2013). Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell. Biomass and Bioenergy, 56, 351-360. https://doi.org/10.1016/j.biombioe.2013.05.015

Samad, N. A. F. A., Jamin, N. A., & Saleh, S. (2017). Torrefaction of municipal solid waste in Malaysia. Energy Procedia, 138, 313-318. https://doi.org/10.1016/j.egypro.2017.10.106

Shinoj, S., Visvanathan, R., Panigrahi, S., & Kochubabu, M. (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, 33(1), 7-22. https://doi.org/10.1016/j.indcrop.2010.09.009

Sukiran, M. A., Abnisa, F., Daud, W. M., Bakar, N. A., & Loh, S. K. (2017). A review of torrefaction of oil palm solid wastes for biofuel production. Energy Conversion and Management, 149, 101-120. https://doi.org/10.1016/j.enconman.2017.07.011

Tan, J. P., Jahim, J., Harun, S., Wu, T. Y., & Mumtaz, T. (2016). Utilization of oil palm fronds as a sustainable carbon source in biorefineries. International Journal of Hydrogen Energy, 41(8), 4896-4906. https://doi.org/10.1016/j.ijhydene.2015.08.034

Tumulu, J. S., Sokhansanj, S., Wright, C. T., & Boardman, R. D. (2011). A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology, 7(5), 384-401. https://doi.org/10.1089/ind.2011.7.384

Uemura, Y., Omar, W., Tsutsui, T., & Yusup, S. (2011). Torrefaction of oil palm wastes. Fuel, 90, 2585-2591. https://doi.org/10.1016/j.fuel.2011.03.021

Umar, M. S., Jennings, P., & Umee, T. (2014). Generating renewable energy from oil palm biomass in Malaysia: The Feed-in Tariff policy framework. Biomass and Bioenergy, 62, 37-46. https://doi.org/10.1016/j.biombioe.2014.01.020

Van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of Biofuels: A Review. Biomass and Bioenergy, 35, 3748-3762.

Wahid, F. R., Saleh, S., & Samad, N. A. (2017). Estimation of higher heating value of torrefied palm oil wastes from proximate analysis. Energy Procedia, 138, 307-312. https://doi.org/10.1016/j.egypro.2017.10.102

Wahid, M. W., & Simeh, M. A. (2010). Accelerated oil palm replanting: the way forward for a sustainable and competitive industry. Oil Palm Industry Economic Journal, 10, 29-38.

Zahari, M. W., Abu Hassan, O., Wong, H. K., & Liang, J. B. (2003). Utilization of oil palm frond - based diets for beef and dairy production in Malaysia. Asian-Australasian Journal of Animal Sciences, 16(4), 625-634.

Zhang, C., Ho, S.-H., Chen, W.-H., Xie, Y., Liu, Z., & Chang, J.-S. (2018). Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Applied Energy, 220, 598-604. https://doi.org/10.1016/j.apenergy.2018.03.129