Modeling soil retention, erosion potential, and sedimentation risk using the InVEST SDR model

    Fatemeh Mohammadyari Info
    Khodayar Abdollahi Info
    Mohsen Tavakoli Info
    Rosita Birvydienė Info
DOI: https://doi.org/10.3846/jeelm.2025.25195

Abstract

This study conducts an examination of the Ilam watershed, utilizing the InVEST and SDR models to assess soil retention, erosion, and transport. It incorporates factors like rainfall erosivity, soil erodibility, DEM, land use, vegetation, and conservation practices to explore the complex interplay between ecosystem services (ES) and disservices. The study found that the average soil retention in the watershed is 94.5 tons/ha/year, the average erosion potential is 62.8 tons/ha/year, and the average sediment transport is 10.5 tons/ha/year. Forest areas retain a significant portion of sediment (60%) with low discharge (13%), while agricultural and urban regions contribute more to erosion. This highlights the importance of integrating ES into land management strategies to mitigate environmental degradation. The study highlights the crucial role of ES in maintaining ecological balance and supporting human well-being. It advocates for innovative policies and customized solutions to mitigate land use impacts on soil conservation and sediment retention, thereby fostering awareness among managers and decision-makers for more sustainable land use planning.

Keywords:

ecosystem services, environmental sustainability, soil retention, soil erosion, sedimentation, InVEST SDR

How to Cite

Mohammadyari, F., Abdollahi, K., Tavakoli, M., & Birvydienė, R. (2025). Modeling soil retention, erosion potential, and sedimentation risk using the InVEST SDR model. Journal of Environmental Engineering and Landscape Management, 2025(33), 389–399. https://doi.org/10.3846/jeelm.2025.25195

Share

Published in Issue
November 14, 2025
Abstract Views
0

References

Ahmadi Mirghaed, F., Souri, B., Mohammadzadeh, M., Salmanmahiny, A., & Mirkarimi, S. H. (2018). Evaluation of the relationship between soil erosion and landscape metrics across Gorgan Watershed in northern Iran. Environmental Monitoring and Assessment, 190(11), Article 643. https://doi.org/10.1007/s10661-018-7040-5

Aneseyee, A. B., Elias, E., Soromessa, T., & Feyisa, G. L. (2020). Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Science of the Total Environment, 728, Article 138776. https://doi.org/10.1016/j.scitotenv.2020.138776

Azimi Sardari, M. R., Bazrafshan, O., Panagopoulos, T., & Sardooi, E. R. (2019). Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam Watershed. Sustainability, 11(12), Article 3353. https://doi.org/10.3390/su11123353

Balabathina, V. N., Raju, R. P., Mulualem, W., & Tadele, G. (2020). Estimation of soil loss using remote sensing and GIS-based universal soil loss equation in northern catchment of Lake Tana Sub-basin, Upper Blue Nile Basin, Northwest Ethiopia. Environmental Systems Research, 9(1), 1–32. https://doi.org/10.1186/s40068-020-00203-3

Bhattacharya, R. K., Chatterjee, N. D., & Das, K. (2024). Modelling of soil erosion susceptibility incorporating sediment connectivity and transport at landscape scale using integrated machine learning, InVEST-SDR and Fragstats. Journal of Environmental Management, 353, Article 120164. https://doi.org/10.1016/j.jenvman.2024.120164

Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., & Panagos, P., & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1), Article 2013. https://doi.org/10.1038/s41467-017-02142-7

Carucci, T., Whitehouse-Tedd, K., Yarnell, R. W., Collins, A., Fitzpatrick, F., Botha, A., & Santangeli, A. (2022). Ecosystem services and disservices associated with vultures: A systematic review and evidence assessment. Ecosystem Services, 56, Article 101447. https://doi.org/10.1016/j.ecoser.2022.101447

Degife, A., Worku, H., & Gizaw, S. (2021). Environmental implications of soil erosion and sediment yield in Lake Hawassa watershed, south-central Ethiopia. Environmental Systems Research, 10(1), Article 28. https://doi.org/10.1186/s40068-021-00232-6

da Cunha, E. R., Santos, C. A. G., da Silva, R. M., Panachuki, E., de Oliveira, P. T. S., de Souza Oliveira, N., & dos Santos Falcão, K. (2022). Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil). Science of the Total Environment, 818, Article 151811. https://doi.org/10.1016/j.scitotenv.2021.151811

Eniyew, S., Teshome, M., Sisay, E., & Bezabih, T. (2021). Integrating RUSLE model with remote sensing and GIS for evaluation soil erosion in Telkwonz Watershed, Northwestern Ethiopia. Remote Sensing Applications: Society and Environment, 24, Article 100623. https://doi.org/10.1016/j.rsase.2021.100623

Gadisa, N., & Midega, T. (2021). Soil and water conservation measures in Ethiopia: Importance and adoption challenges. World Jol of Agri and Soil Science, 6(3), 1–7. https://doi.org/10.33552/WJASS.2021.06.000636

Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS – a case study of Nethravathi basin. Geoscience Frontiers, 7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007

Gashaw, T., Tulu, T., & Argaw, M. (2018). Erosion risk assessment for prioritization of conservation measures in Geleda watershed, Blue Nile basin, Ethiopia. Environmental Systems Research, 6(1), 1–14. https://doi.org/10.1186/s40068-016-0078-x

Gashaw, T., Bantider, A., Zeleke, G., Alamirew, T., Jemberu, W., Worqlul, A. W., Dile, Y. T., Bewket, W., Meshesha, D. T., Adem, A. A., & Addisu, S. (2021). Evaluating InVEST model for estimating soil loss and sediment transport in data scarce regions of the Abbay (Upper Blue Nile) Basin: Implications for land managers. Environmental Challenges, 5, Article 100381. https://doi.org/10.1016/j.envc.2021.100381

Getu, L. A., Nagy, A., & Addis, H. K. (2022). Soil loss estimation and severity mapping using the RUSLE model and GIS in Megech watershed, Ethiopia. Environmental Challenges, 8, Article 100560. https://doi.org/10.1016/j.envc.2022.100560

Gholami, L., Khaledi Darvishan, A., Derakhti, S., & Kiani Harchegani, M. (2024). Effects evaluation of land use change on soil erosion using the RUSLE model in the Chardavol watershed, Ilam. Journal of Water Management and Soil Erosion, 18(65), 1–14.

Guo, B., Yang, F., Fan, J., & Lu, Y. (2022). The changes of spatiotemporal pattern of rocky desertification and its dominant driving factors in typical karst mountainous areas under the background of global change. Remote Sensing, 14(10), Article 2351. https://doi.org/10.3390/rs14102351

Hamel, P., Chaplin-Kramer, R., Sim, S., & Mueller, C. (2015). A new approach to modelling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Science of the Total Environment, 524–525, 166–177. https://doi.org/10.1016/j.scitotenv.2015.04.027

Kusi, K. K., Khattabi, A., Mhammdi, N., & Lahssini, S (2020). Prospective evaluation of the impact of land use change on ecosystem services in the Ourika watershed, Morocco. Land Use Policy, 97, Article 104796. https://doi.org/10.1016/j.landusepol.2020.104796

Kretz, L., Koll, K., Seele-Dilbat, C., van der Plas, F., Weigelt, A., & Wirth, C. (2021). Plant structural diversity alters sediment retention on and underneath herbaceous vegetation in a flume experiment. PLoS One, 16(3), Article e0248320. https://doi.org/10.1371/journal.pone.0248320

Liu, Y., Lü, Y., Zhao, M., & Fu, B. (2023). Integrative analysis of biodiversity, ecosystem services, and ecological vulnerability can facilitate improved spatial representation of nature reserves. Science of the Total Environment, 879, Article 163096. https://doi.org/10.1016/j.scitotenv.2023.163096

Liu, W., Shi, C., Ma, Y., Li, H., & Ma, X. (2021). Land use and land cover change-induced changes of sediment connectivity and their effects on sediment yield in a catchment on the Loess Plateau in China. Catena, 207, Article 105688. https://doi.org/10.1016/j.catena.2021.105688

Mazigh, N., Taleb, A., El Bilali, A., & Ballah, A. (2022). The effect of erosion control practices on the vulnerability of soil degradation in Oued EL Malleh catchment using the USLE model integrated into GIS, Morocco. Trends in Sciences, 19(2), 2059–2059. https://doi.org/10.48048/tis.2022.2059

Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being. Island Press.

Moges, D. M., & Bhat, H. G. (2017). Integration of geospatial technologies with RUSLE for analysis of land use/cover change impact on soil erosion: Case study in Rib watershed, north-western highland Ethiopia. Environmental Earth Sciences, 76, 1–14. https://doi.org/10.1007/s12665-017-7109-4

Ougougdal, H. A., Khebiza, M. Y., Messouli, M., & Bounoua, L. (2020). Delineation of vulnerable areas to water erosion in a mountain region using SDR-InVEST model: A case study of the Ourika watershed, Morocco. Scientific African, 10, Article e00646. https://doi.org/10.1016/j.sciaf.2020.e00646

Paudel, S., & States, S. (2023). Urban green spaces and sustainability: Exploring the ecosystem services and disservices of grassy lawns versus floral meadows. Urban Forestry & Urban Greening, 84, Article 127932. https://doi.org/10.1016/j.ufug.2023.127932

Potschin-Young, M., Czúcz, B., Liquete, C., Maes, J., Rusch, G. M., & Haines-Young, R. (2017). Intermediate ecosystem services: An empty concept? Ecosystem Services, 27(Part A), 124–126. https://doi.org/10.1016/j.ecoser.2017.09.001

Sadeghi, S. H. R. (1993). An overview of the Modified Pacific Southwest Inter-Agency Committee model for estimating soil erosion in Iran. Journal of Soil and Water Conservation, 48(4), 345–350.

Srichaichana, J., Trisurat, Y., & Ongsomwang, S. (2020). Land use and land cover scenarios for optimum water yield and sediment retention ecosystem services in Klong U-Tapao Watershed, Songkhla Thailand. Sustainability, 11(10), 1–22. https://doi.org/10.3390/su11102895

Sharp, R., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Chaplin-Kramer, R., Nelson, E., et al. (2020). InVEST 3.8.9 user’s guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.

Sun, Y., Liu, D., & Wang, P. (2022). Urban simulation incorporating coordination relationships of multiple ecosystem services. Sustainable Cities and Society, 76, Article 103432. https://doi.org/10.1016/j.scs.2021.103432

Tamene, L., Adimassu, Z., Aynekulu, E., & Yaekob, T. (2017). Estimating landscape susceptibility to soil erosion using a GIS-based approach in Northern Ethiopia. International Soil and Water Conservation Research, 5(3), 221–230. https://doi.org/10.1016/j.iswcr.2017.05.002

Tamire, C., Elias, E., & Argaw, M. (2022). Spatiotemporal dynamics of soil loss and sediment transport in Upper Bilate River Catchment (UBRC), Central Rift Valley of Ethiopia. Heliyon, 8(11), Article e11220. https://doi.org/10.1016/j.heliyon.2022.e11220

Yang, Y., Zhang, D., Nan, Y., Liu, Z., & Zheng, W. (2019). Modeling urban expansion in the transnational area of Changbai Mountain: A scenario analysis based on the zoned Land Use Scenario Dynamics-urban model. Sustainable Cities and Society, 50, Article 101622. https://doi.org/10.1016/j.scs.2019.101622

Yang, W., Bai, Y., Ali, M., Huang, Z., Yang, Z., & Zhou, Y. (2023a). Quantifying the difference between supply and demand of ecosystem services at different spatial-temporal scales: A case study of the Taihu Lake Basin. Circular Agricultural Systems, 3, Article 5. https://doi.org/10.48130/CAS-2023-0005

Yang, J., Zhai, D. L., Fang, Z., Alatalo, J. M., Yao, Z., Yang, W., Su, Y., Bai, Y., Zhao, G., & Xu, J. (2023b). Changes in and driving forces of ecosystem services in tropical southwestern China. Ecological Indicators, 149, Article 110180. https://doi.org/10.1016/j.ecolind.2023.110180

Yohannes, H., Soromessa, T., Argaw, M., & Dewan, A. (2021). Impact of landscape pattern changes on hydrological ecosystem services in the Beressa watershed of the Blue Nile Basin in Ethiopia. Science of the Total Environment, 793, Article 148559. https://doi.org/10.1016/j.scitotenv.2021.148559

Vigiak, O., Borselli, L., Newham, L. T. H., McInnes, J., & Roberts, A. M. (2012). Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology, 138, 74–88. https://doi.org/10.1016/j.geomorph.2011.08.026

Vijith, H., & Dodge-Wan, D. (2019). Modelling terrain erosion susceptibility of logged and regenerated forested region in northern Borneo through the Analytical Hierarchy Process (AHP) and GIS techniques. Geoenvironmental Disasters, 6(1), Article 8. https://doi.org/10.1186/s40677-019-0124-x

Zakeri, A., Fadaei, R., & Mohammadi, A. (2015). Evaluation of soil losses and sediment yield using modified PSIAC model in a watershed. Journal of Water and Soil Conservation, 22(1), 85–92.

Zhou, M., Deng, J., Lin, Y., Belete, M., Wang, K., Comber, A., Huang, L., & Gan, M. (2019). Identifying the effects of land use change on sediment transport: Integrating sediment source and sediment delivery in the Qiantang River Basin, China. Science of the Total Environment, 686, 38–49. https://doi.org/10.1016/j.scitotenv.2019.05.336

Zhao, J., Shao, Z., Xia, C., Fang, K., Chen, R., & Zhou, J. (2022). Ecosystem services assessment based on land use simulation: A case study in the Heihe River Basin, China. Ecological Indicators, 143, Article 109402. https://doi.org/10.1016/j.ecolind.2022.109402

View article in other formats

CrossMark check

CrossMark logo

Published

2025-11-14

Issue

Section

Articles

How to Cite

Mohammadyari, F., Abdollahi, K., Tavakoli, M., & Birvydienė, R. (2025). Modeling soil retention, erosion potential, and sedimentation risk using the InVEST SDR model. Journal of Environmental Engineering and Landscape Management, 2025(33), 389–399. https://doi.org/10.3846/jeelm.2025.25195

Share