The impact of lakeshore modifications and constructions on visual landscape quality: a mixed methods study
DOI: https://doi.org/10.3846/jeelm.2025.24550Abstract
Lakeshore areas continue to be threatened by increasing human activities and land use. Development and large construction projects in lakeshore areas affect both the lake’s ecological condition and its landscape quality and aesthetics. To minimize and prevent the occurrence of significant visual impacts, it is important to understand and evaluate the magnitude of damage and the factors contributing to such impacts from development activities. In this study, a mixed methods approach is used to assess the visual impact of modifications and constructions on the lakeshore landscape. This includes (1) an objective landscape indicator-based assessment method to measure the extent of construction and modification impacts on the visual landscape, and (2) a visual perception-based assessment method to capture receptors’ evaluations of the visual landscape changes and visual impact factors on the lakeshore. Integrating the results from both methods yields a comprehensive assessment of visual impact. The results of both assessment methods indicate that the visual quality of the lakeshore landscape declined significantly during the construction phase. In addition, this study concludes that this mixed approach to visual impact assessment has greater advantages than a single approach and provides more dimensional information, criteria, and perspectives.
Keywords:
lakefront landscape, visual impact, landscape aesthetics, impact evaluationHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Atik, M., Işıklı, R. C., Ortaçeşme, V., & Yıldırım, E. (2017). Exploring a combination of objective and subjective assessment in landscape classification: Side case from Turkey. Applied Geography, 83, 130–140. https://doi.org/10.1016/j.apgeog.2017.04.004
Bamberger, M. (2012). Introduction to mixed methods in impact evaluation. Impact Evaluation Notes, 3(3), 1–38.
Boromisza, Z. (2012). Complex shore zone evaluation of lake Velence, Hungary. Applied Ecology and Environmental Research, 10, 31–46. https://doi.org/10.15666/aeer/1001_031046
Cai, X., & Boromisza, Z. (2020). Public perceptions and aesthetic preferences of lakeshore landscape: The example of Lake Velence (Hungary). Landscape & Environment, 14(2), 31–42. https://doi.org/10.21120/LE/14/2/3
Canter, L. W. (1996). Environmental impact assessment (2nd ed.). McGraw-Hill. https://doi.org/10.1201/NOE0849321573.ch2
Carpenter, S. R., Benson, B. J., Biggs, R., Chipman, J. W., Foley, J. A., Golding, S. A., Hammer, R. B., Hanson, P. C., Johnson, P. T. J., Kamarainen, A. M., Kratz, T. K., Lathrop, R. C., McMahon, K. D., Provencher, B., Rusak, J. A., Solomon, C. T., Stanley, E. H., Turner, M. G., Vander Zanden, M. J., … Yuan, H. (2007). Understanding regional change: A comparison of two lake districts. BioScience, 57(4), 323–335. https://doi.org/10.1641/B570407
Cui, L., Li, G., Chen, Y., & Li, L. (2021). Response of landscape evolution to human disturbances in the coastal wetlands in Northern Jiangsu Province, China. Remote Sensing, 13(11), Article 11. https://doi.org/10.3390/rs13112030
Daniel, T. C. (2001). Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landscape and Urban Planning, 54(1–4), 267–281. https://doi.org/10.1016/S0169-2046(01)00141-4
de la Fuente de Val, G., Atauri, J., & de Lucio, J. (2006). Relationship between landscape visual attributes and spatial pattern indices: A test study in Mediterranean-climate landscapes. Landscape and Urban Planning, 77, 393–407. https://doi.org/10.1016/j.landurbplan.2005.05.003
Dupont, L., Ooms, K., Antrop, M., & Van Etvelde, V. (2017). Testing the validity of a saliency-based method for visual assessment of constructions in the landscape. Landscape and Urban Planning, 167, 325–338. https://doi.org/10.1016/j.landurbplan.2017.07.005
Farmer, A. M. (2001). The EC water framework Directive: An introduction. Water Law, 12(1), 40–46.
Frank, S., Fürst, C., Koschke, L., Witt, A., & Makeschin, F. (2013). Assessment of landscape aesthetics—Validation of a landscape metrics-based assessment by visual estimation of the scenic beauty. Ecological Indicators, 32, 222–231. https://doi.org/10.1016/j.ecolind.2013.03.026
Furgała-Selezniow, G., Jankun-Woźnicka, M., & Mika, M. (2020). Lake regions under human pressure in the context of socio-economic transition in Central-Eastern Europe: The case study of Olsztyn Lakeland, Poland. Land Use Policy, 90, Article 104350. https://doi.org/10.1016/j.landusepol.2019.104350
Furgała-Selezniow, G., Jankun-Woźnicka, M., Woźnicki, P., Cai, X., Erdei, T., & Boromisza, Z. (2022). Trends in lakeshore zone development: A comparison of Polish and Hungarian Lakes over 30-year period. International Journal of Environmental Research and Public Health, 19(4), Article 2141. https://doi.org/10.3390/ijerph19042141
Gábor, W. (2016). Historical review of the tourism development of Lake Velence. Turizam, 20(4), 192–211. https://doi.org/10.5937/Turizam1604192G
Hall, C. M., & Härkönen, T. (Eds.). (2006). Lake Tourism: An integrated approach to lacustrine tourism systems. Channel View Publications. https://doi.org/10.21832/9781845410421
Hattam, C., Böhnke-Henrichs, A., Börger, T., Burdon, D., Hadjimichael, M., Delaney, A., Atkins, J. P., Garrard, S., & Austen, M. C. (2015). Integrating methods for ecosystem service assessment and valuation: Mixed methods or mixed messages? Ecological Economics, 120, 126–138. https://doi.org/10.1016/j.ecolecon.2015.10.011
Hernández, J., García, L., & Ayuga, F. (2004). Integration Methodologies for visual impact assessment of rural buildings by geographic information systems. Biosystems Engineering, 88(2), 255–263. https://doi.org/10.1016/j.biosystemseng.2004.02.008
Hu, S., Yue, H., & Zhou, Z. (2019). Preferences for urban stream landscapes: Opportunities to promote unmanaged riparian vegetation. Urban Forestry & Urban Greening, 38, 114–123. https://doi.org/10.1016/j.ufug.2018.12.001
Jiang, L., Kang, J., & Schroth, O. (2015). Prediction of the visual impact of motorways using GIS. Environmental Impact Assessment Review, 55, 59–73. https://doi.org/10.1016/j.eiar.2015.07.001
Krause, C. L. (2001). Our visual landscape: Managing the landscape under special consideration of visual aspects. Landscape and Urban Planning, 54(1–4), 239–254. https://doi.org/10.1016/S0169-2046(01)00139-6
Landscape Institute, & Institute of Environmental Management & Assessment. (2013). Guidelines for landscape and visual impact assessment (3 ed.). Routledge. Https://doi.org/10.4324/9780203436295
Latinopoulos, D., Ntislidou, C., & Kagalou, I. (2018). A multi-approach Lake Habitat Survey method for impact assessment in two heavily modified lakes: A case of two Northern Greek lakes. Environmental Monitoring and Assessment, 190(11), Article 658. https://doi.org/10.1007/s10661-018-7045-0
Li, X., Li, L., Wang, X., Lin, Q., Wu, D., Dong, Y., & Han, S. (2021). Visual quality evaluation model of an urban river landscape based on random forest. Ecological Indicators, 133, Article 108381. https://doi.org/10.1016/j.ecolind.2021.108381
Lin, L., Homma, R., & Iki, K. (2018). Preferences for a lake landscape: Effects of building height and lake width. Environmental Impact Assessment Review, 70, 22–33. https://doi.org/10.1016/j.eiar.2018.03.001
Lindsay, A. R., Gillum, S. S., & Meyer, M. W. (2002). Influence of lakeshore development on breeding bird communities in a mixed northern forest. Biological Conservation, 107(1), 1–11. https://doi.org/10.1016/S0006-3207(01)00260-9
Misthos, L.-M., Pavlidis, A., Karabassakis, E., Menegaki, M., Krassanakis, V., & Nakos, B. (2020). Exploring the visual impact from open pit mines applying eye movement analyses on mining landscape photographs. International Journal of Mining, Reclamation and Environment, 34(9), 609–624. https://doi.org/10.1080/17480930.2019.1576582
Palmer, J. F. (1983). Visual quality and visual impact assessment. In K. Finsterbusch, L. Llewllyn, & C. P. Wolf (Eds.), Social impact assessment methods (pp. 263–284). Sage. https://doi.org/10.13140/2.1.4276.6723
Papp, F. (1995). Re-examination of the shore fortification works at Lake Velence. Víz-Inter Mérnökiroda Kft., Székesfehérvár. (in Hungarian)
QGIS Development Team. (2016). QGIS geographic information system (Version 2.18). QGIS Association. https://qgis.org
Schmid, W. A. (2001). The emerging role of visual resource assessment and visualisation in landscape planning in Switzerland. Landscape and Urban Planning, 54(1–4), 213–221. https://doi.org/10.1016/S0169-2046(01)00137-2
Smardon, R. C. (1988). Visual impact assessment for Island and coastal environments. Impact Assessment, 6(1), 5–24. https://doi.org/10.1080/07349165.1988.9725619
Spielhofer, R., Hunziker, M., Kienast, F., Wissen Hayek, U., & Grêt-Regamey, A. (2021). Does rated visual landscape quality match visual features? An analysis for renewable energy landscapes. Landscape and Urban Planning, 209, Article 104000. https://doi.org/10.1016/j.landurbplan.2020.104000
Wang, R., Zhao, J., & Liu, Z. (2016). Consensus in visual preferences: The effects of aesthetic quality and landscape types. Urban Forestry & Urban Greening, 20, 210–217. https://doi.org/10.1016/j.ufug.2016.09.005
Werner, A., & Zander, P. (2001). Models assessing the impact of land-use change in rural areas on development of environmental threats and their use for agricultural politics. In Landscape ecology in agroecosystems management (pp. 1–22). CRC Press. https://doi.org/10.1201/9781420041378.ch12
Wróżyński, R., Sojka, M., & Pyszny, K. (2016). The application of GIS and 3D graphic software to visual impact assessment of wind turbines. Renewable Energy, 96, 625–635. https://doi.org/10.1016/j.renene.2016.05.016
Wu, Y., Bishop, I., Hossain, H., & Sposito, V. (2006). Using GIS in Landscape visual quality assessment. Applied GIS, 2(3), 18.1–18.20. https://doi.org/10.2104/ag060018
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.