Share:


Assessing of monthly surface water changes impact on thermal human discomfort in Baghdad

    Jamal S. Abd Al Rukabie Affiliation
    ; Dalia A. Mahmood Affiliation
    ; Monim H. Al-Jiboori Affiliation
    ; Mustafa S. Srayyih Affiliation

Abstract

In urban areas, surface water bodies play an important role in mitigating thermal discomfort, which is mainly caused by increasing air temperatures. Based on daily temperature and relative humidity data recorded by the Baghdad weather station for the two years 2018 and 2021, the monthly human discomfort index was calculated and then combined with monthly surface water areas extracted by a modified normalized difference water index using Sentinel-2A satellite imagery for the same period. The results show that the winter and most spring months of these years have no discomfort, and the summer months (July and August) in 2021 have the highest discomfort with severe thermal stress due to the large deficit in rainfall events. The monthly relationship between urban water surfaces and the level of the discomfort index was also studied, which was non-linear and followed the exponential decay function. This means that as the amount of surface water increased, the levels of the discomfort index decreased exponentially until no discomfort conditions existed.

Keyword : surface water, MNDWI, Sentinel-2A satellite, discomfort index, surface water bodies, Baghdad

How to Cite
Abd Al Rukabie, J. S., Mahmood, D. A., Al-Jiboori, M. H., & Srayyih, M. S. (2024). Assessing of monthly surface water changes impact on thermal human discomfort in Baghdad. Journal of Environmental Engineering and Landscape Management, 32(4), 283–291. https://doi.org/10.3846/jeelm.2024.22353
Published in Issue
Nov 6, 2024
Abstract Views
171
PDF Downloads
110
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adeeb, H. Q., & Al-Timimi, Y. K. (2019). GIS techniques for mapping of wind speed over Iraq. Iraqi Journal of Agricultural Sciences, 50(6), 1621–1629. https://doi.org/10.36103/ijas.v50i6.852

Al-Basrawi, N. H., Awad, J. H., & Hussain, T. A. (2015). Evaluation of the ground water in Baghdad governorate / Iraq. Iraqi Journal of Science, 56(2C), 1708–1718.

Al-Jiboori, M. H. (2007). Evaluation physiological human comfort in Iraq. Al-Mustansiriyah Journal of Science, 18(1), 63–75.

Al-Jiboori, M. H., Abu Al-Shear, M. J., & Ahmed, M. M. (2020). Impact of land surface changes on air temperatures in Baghdad. Kuwait Journal of Science, 47(4), 118–126.

Al-Timime, N. S., Al-Salihi, A. M., & Hameed, A. A. (2024). Investigating the optimal duration of the sun exposure for adequate cutaneous synthesis of vitamin D3 in Baghdad City: Depending on Fitzpatrick skin classification for different skin types. Iraqi Journal of Science, 65(1), 546–554. https://doi.org/10.24996/ijs.2024.65.1.42

Al-Timimi, Y. K., & Al-Khudhairy, A. A. (2018). Spatial and temporal temperature trends on Iraq during 1980-2015. Journal of Physics: Conference Series, 1003, Article 012091. https://doi.org/10.1088/1742-6596/1003/1/012091

Cheng, C., Zhang, F., Shi, J., & Kung, H. (2022). What is the relationship between land use and surface water quality? A review and prospects from remote sensing perspective. Environmental Science and Pollution Research, 29, 56887–56907. https://doi.org/10.1007/s11356-022-21348-x

Cheng, Y. Y., Liu, X., Zeng, Z., Liu, S. S., Wang, Z., Tang, X., & He, B. J. (2022). Impacts of water bodies on microclimates and outdoor thermal comfort: Implications for sustainable rural revitalization. Frontiers in Environmental Science, 10, Article 940482. https://doi.org/10.3389/fenvs.2022.940482

Dasari, H. P., Desamsetti, S., Langodan, S., Viswanadhapalli, Y., & Hoteit, I. (2021). Analysis of outdoor thermal discomfort over the Kingdom of Saudi Arabia. GeoHealth, 5(6), Article e2020GH000370. https://doi.org/10.1029/2020GH000370

Deng, X., Cao, Q., Wang, L., Wang, W., Wang, S., Wang, S., & Wang, L. (2023). Characterizing urban densification and quantifying its effects on urban thermal environments and human thermal comfort. Landscape and Urban Planning, 237, Article 104803. https://doi.org/10.1016/j.landurbplan.2023.104803

Febrita, Y., Ekasiwi, S. N. N., & Antaryama, I. G. N. (2021). Urban river landscape factors impact on urban microclimate in tropical region. IOP Conference Series: Earth and Enviromental Science, 764, Article 012032. https://doi.org/10.1088/1755-1315/764/1/012032

Genjebo, M. G., Kemal, A., & Nannawo, A. S. (2023). Assessment of surface water resource and allocation optimization for diverse demands in Ethiopia’s upper Bilate Watershed. Heliyon, 9(10), Article e20298. https://doi.org/10.1016/j.heliyon.2023.e20298

Halos, S. H., Al-Taai, O. T., & Al-Jiboori, M. H. (2017). Impact of dust events on aerosol optical properties over Iraq. Arabian Journal of Geoscience, 10, Article 263. https://doi.org/10.1007/s12517-017-3020-2

Hong, C., Qu, Z. K., Xu, W., & Gu, Z. L. (2023). Study on water cooling island effects under different climatic conditions. City and Built Environment, 1, Article 4. https://doi.org/10.1007/s44213-022-00004-7

Huang, C., Chen, Y., Zhang, S., & Wu, J. P. (2018). Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, 56, 333–360. https://doi.org/10.1029/2018RG000598

Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar, S., Samatova, N., & Kumar, V. (2017). Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering, 29(10), 2318–2331. https://doi.org/10.1109/TKDE.2017.2720168

Kazmi, H., Keijsers, M., Mehmood, F., & Miller, C. (2022). Energy balances, thermal performance, and heat stress: Disentangling occupant behaviour and weather influences in a Dutch net-zero energy neighborhood. Energy and Buildings, 263, Ar­ticle 112020. https://doi.org/10.1016/j.enbuild.2022.112020

Kishta, M., Robaa, S. M., Abdel Wahab, M. M., & Al Abadla, Z. (2022). Spatial distribution of outdoor thermal human comfort in the UAE. World Journal of Advanced Research and Reviews, 13(2), 43–49. https://doi.org/10.30574/wjarr.2022.13.2.0104

Le Sève, M. D. (2023). Riding the wave: How the private sector is seizing opportunities to accelerate progress on water security. Disclosure Insight Action. https://cdn.cdp.net/cdp-production/cms/reports/documents/000/006/925/original/CDP_Water_Global_Report_2022_Web.pdf

Mahdi, Z. S., Tawfeek, Y. Q., & Al-Jiboori, M. H. (2024). Relationship between monthly surface water derived from Sentinel-2 imagery and meteorological data (precipitation and evaporation) at Baghdad, Iraq. Water Practice & Technology, 19(5), 1794–1809. https://doi.org/10.2166/wpt.2024.098

Mushore, T. D., Chimuti, B., Gwenzi, J., Mutasa, C., Mashonjowa, E., Mhizha, T., Muroyiwa, G., & Rousta, I. (2019). Localised human thermal discomfort assessment using high temporal resolution meteorological data: A case of University of Zimbabwe. Physics and Chemistry of the Earth, 110, 138–148. https://doi.org/10.1016/j.pce.2019.01.010

Naqi, N. M., Al-Jiboori, M. H., & Al-Madhhach, A. T. (2021). Statistical analysis of extreme weather events in the Diyala River basin, Iraq. Journal of Water and Climate Change, 12(8), 3770–3785. https://doi.org/10.2166/wcc.2021.217

Ncongwane, K. P., Botai, J. O., Sivakumar, V., & Botai, C. M. (2021). A literature review of the impacts of heat stress on human health across Africa. Sustainability, 13(9), Article 5312. https://doi.org/10.3390/su13095312

Nurmaya, E. M., Abidin, A. U., Hasanah, N. A. I., & Asmara, A. A. (2022). Heat stress analysis using the discomfort index method: Impact on macro environmental in Yogyakarta. Journal of Ecological Engineering, 23(1), 286–295. https://doi.org/10.12911/22998993/144092

Pantoja, W., Rodrigues, C. C., Chase, O. A., Almeida, F. S., Bei­rão, A. T., & Silva, K. (2021). Usage of arduino-based datalogger for thermal comfort variables monitoring. International Journal for Innovation Education and Research, 7, 214–223. https://doi.org/10.31686/ijier.vol9.iss7.3237

Siami, L., & Ramadhani, A. (2019). Climatology of discomfort index for decade in Bandar Lampung, Indonesia. KnE Social Sciences, 3(21), 460–469. https://doi.org/10.18502/kss.v3i21.4987

Stathopoulou, M. I., Cartalis, C., Keramitsoglou, I., & Santamou­ris, M. (2005). Thermal remote sensing of Thom’s Discomfort Index (DI): Comparison with in-situ measurements. In Remote sensing for environmental monitoring, GIS applications, and geo­logy (Vol. 5983). SPIE. https://doi.org/10.1117/12.627541

Syafii, N. I., Ichinose, M., Wong, N. H., Kumakura, E., Jusuf, S. K., & Chigusa, K. (2016). Experimantal study on the influence of urban watre body on thermal environment at outdoor scale model. Procedia Engineering, 169, 191–198. https://doi.org/10.1016/j.proeng.2016.10.023

Tawfeek, Y. Q., Jasim, F. H., & Al-Jiboori, M. H. (2020). A study canopy urban heat island of Baghdad, Iraq. Asian Journal of Atmospheric Environment, 14(3), 280–288. https://doi.org/10.5572/ajae.2020.14.3.280

Thom, E. C. (1959). The discomfort index. Weatherwise, 12, 57–61. https://doi.org/10.1080/00431672.1959.9926960

Wahab, B. I., Naif, S. S., & Al-Jiboori, M. H. (2022). Development of anuual urban heat island in Baghdad under climate change. Journal of Environmental Engineering and Landscape Management, 30(1), 179–187. https://doi.org/10.3846/jeelm.2022.16374

Wong, N. H., Tan, C. L., Shinta, A. D., Jusuf, S. K., & Tan, E. (2011). Influence of water bodies on outdoor air temperature in hot and humid climate. In ICSDC (pp. 81–89), Kansas City, Missouri. American Society of Civil Engineers. https://doi.org/10.1061/41204(426)11

Xu, J. C., Wei, Q. L., Huang, X. F., Zhu, X. Z., & Li, G. M. (2010). Evaluation of human thermal comfort near urban waterbody during summer. Building and Environment, 45(4), 1072–1080. https://doi.org/10.1016/j.buildenv.2009.10.025

Yang, X., Qin, Q., Grussenmeyer, P., & Koehl, M. (2018). Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sensing of Environment, 219, 259–270. https://doi.org/10.1016/j.rse.2018.09.016

Yousif, T. A., & Tahir, H. M. M. (2013). Application of Thom’s thermal discomfort index in Khartoum State, Sudan. Journal of Forest Products & Industtries, 2(5), 36–38.

Zahraa, M. H., Al-Jiboori, M. H., & Al-Abassi, H. M. (2020). The effect of the extremes heat waves on mortality rates in Baghdad during the period (2004-2018). Al-Mustansiriya Journal of Science, 31, 15–23. http://doi.org/10.23851/mjs.v31i2.753

Zeng, Z. W., Zhou, X. Q., & Li, L. (2017). The impact of water on microclimate in Lingnan area. Procedia Engineering, 205, 2034–2040. https://doi.org/10.1016/j.proeng.2017.10.082