Share:


Arbuscular mycorrhizal symbiosis of Viola baoshanensis at Baoshan Pb/Zn mine in China

    Weiliang Zhong Affiliation

Abstract

Despite great potential for arbuscular mycorrhizal fungi (AMF) in restoration of heavy metals (HMs) polluted lands, limited information is available about the arbuscular mycorrhizal (AM) symbiosis of naturally-occurring hyperaccumulators. A preliminary survey was conducted to investigate the AM symbiosis of Viola baoshanensis, a Cadmium (Cd) hyperaccumulator, growing at an abandoned mine. Shoot/root ratios of 1.78 for Cd, and 2.57 for zinc (Zn) indicate that these two metals were preferentially transported from roots to shoots, whereas the ratio of 0.32 for lead (Pb) shows that most Pb was stored in roots. High level of colonization was found in the roots of V. baoshanensis with relative mycorrhizal root length of 69.1%, relative arbuscular richness of 46.9% and relative vesicular richness of 1.7%. Fifteen AMF species were identified from the root zone soil of V. baoshanensis. The dominant AMF genus was Glomus, and the most abundant species were Glomus ambisporum and Claroideglomus etunicatum.

Keyword : hyperaccumulator, arbuscular mycorrhizal fungi, heavy metals, phytoremediation, mycorrhizal colonization

How to Cite
Zhong, W. (2024). Arbuscular mycorrhizal symbiosis of Viola baoshanensis at Baoshan Pb/Zn mine in China. Journal of Environmental Engineering and Landscape Management, 32(2), 143–151. https://doi.org/10.3846/jeelm.2024.20971
Published in Issue
Mar 20, 2024
Abstract Views
264
PDF Downloads
247
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Al Agely, A., Sylvia, D. M., & Ma, L. Q. (2005). Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). Journal of Environmental Quality, 34, 2181–2186. https://doi.org/10.2134/jeq2004.0411

Alford, E. R., Pilon-Smits, E. A. H., & Paschke, M. W. (2010). Metallophytes – a view from the rhizosphere. Plant and Soil, 337, 337–350. https://doi.org/10.1007/s11104-010-0482-3

Antosiewicz, D. M., Escudĕ-Duran, C., Wierzbowska, E., & Skłodowska, A. (2008). Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soil. Water Air and Soil Pollution, 193, 197–210. https://doi.org/10.1007/s11270-008-9683-2

Audet, P. (2013). Examining the ecological paradox of the ‘myco­r­rhizal-metal-hyperaccumulators’. Archives of Agronomy and Soil Science, 59, 549–558. https://doi.org/10.1080/03650340.2012.658378

Baker, A. J., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.

Baker, A. J. M. (1981). Accumulators and excluders – strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654. https://doi.org/10.1080/01904168109362867

Baker, A. J. M., Reeves, R. D., & Hajar, A. S. M. (1994). Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytologist, 127, 61–68. https://doi.org/10.1111/j.1469-8137.1994.tb04259.x

Bandyopadhyay, S. (2022). Plant-assisted metal remediation in mine-degraded land: A scientometric review. International Journal of Environmental Science and Technology, 19, 8085–8112. https://doi.org/10.1007/s13762-021-03396-x

Bills, R. J., & Morton, J. B. (2015). A combination of morphology and 28S rRNA gene sequences provide grouping and ranking criteria to merge eight into three Ambispora species (Ambisporaceae, Glomeromycota). Mycorrhiza, 25, 485–498. https://doi.org/10.1007/s00572-015-0626-7

Clark, P. B. (1997). Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant and Soil, 192, 15–22. https://doi.org/10.1023/A:1004218915413

Cornejo, P., Pérez-Tienda, J., Meier, S., Valderas, A., Borie, F., Azcón-Aguilar, C., & Ferrol, N. (2013). Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biology & Biochemistry, 57, 925–928. https://doi.org/10.1016/j.soilbio.2012.10.031

da Silva, G. A., Trufem, S. F. B., Júnior, O. J. S., & Maia, L. C. (2005). Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. Mycorrhiza, 15, 47–53. https://doi.org/10.1007/s00572-004-0293-6

Del Val, C., Barea, J. M., & Azcón-Aguilar, C. (1999). Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Applied and Environmental Microbiology, 65, 718–723. https://doi.org/10.1128/AEM.65.2.718-723.1999

Dhalaria, R., Kumar, D., Kumar, H., Nepovimova, E., Kuča, K., Islam, M. T., & Verma, R. (2020). Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy, 10, Article 815. https://doi.org/10.3390/agronomy10060815

Dietterich, L. H., Gonneau E., & Casper, B. B. (2017). Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils. Ecological Applications, 27, 1862–1875. https://doi.org/10.1002/eap.1573

Guzmán-Cornejo, L., Pacheco, L., Camargo-Ricalde, S. L., & González-Chávez, Ma. del C. (2023). Endorhizal fungal symbiosis in lycophytes and metal(loid)-accumulating ferns growing naturally in mine wastes in Mexico. International Journal of Phytoremediation, 25(4), 538–549. https://doi.org/10.1080/15226514.2022.2092060

Huang, D., Wang, Q., Zou, Y., Ma, M., Jing, G., Ma, F., & Li, C. (2021). Silencing MdGH3-2/12 in apple reduces cadmium resistance via the regulation of AM colonization. Chemosphere, 269, Article 129407. https://doi.org/10.1016/j.chemosphere.2020.129407

Jankong, P., Visoottiviseth, P., & Khokiattiwong, S. (2007). Enhanced phytoremediation of arsenic contaminated land. Chemosphere, 68, 1906–1912. https://doi.org/10.1016/j.chemosphere.2007.02.061

Koske, R. E., & Gemma, J. N. (1989). A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 92, 486–505. https://doi.org/10.1016/S0953-7562(89)80195-9

Krüger, M., Krüger, C., Walker, C., Stockinger, H., & Schüßler, A. (2012). Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytologist, 193, 970–984. https://doi.org/10.1111/j.1469-8137.2011.03962.x

Kushwaha, P., Neilson, J. W., Maier, R. M., & Babst-Kostecka, A. (2022). Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Science of the Total Environment, 803, Article 150006. https://doi.org/10.1016/j.scitotenv.2021.150006

Leyval, C., Turnau, K., & Haselwandter, K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153. https://doi.org/10.1007/s005720050174

Li, J. M., Liang, H. J., Yan, M., Chen, L. X., Zhang, H. T., Liu, J., Wang, S. Z., & Jin, Z. X. (2017). Arbuscular mycorrhizal fungi facilitate rapid adaptation of Elsholtzia splednens to copper. Science of the Total Environment, 599–600, 1462–1468. https://doi.org/10.1016/j.scitotenv.2017.05.063

Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and, copper. Soil Science Society of America Journal, 42, 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

Liu, W., Shu, W. S., & Lan, C. Y. (2004). Viola baoshanensis, a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 49, 29–32. https://doi.org/10.1007/BF02901739

Liu, Y., Christie, P., Zhang, J., & Li, X. (2009). Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus. Environmental and Experimental Botany, 66, 435–441. https://doi.org/10.1016/j.envexpbot.2009.03.002

Liu, Y., Zhu, Y. G., Chen, B. D., Christie, P., & Li, X. L. (2005). Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza, 15, 187–192. https://doi.org/10.1007/s00572-004-0320-7

Luo, Y., Zhang, D., Guo, Y., Zhang, S., Chang, L., Qi, Y., Li, X., Liu, J., Guo, W., Zhao, J., & Bao, Z. (2022). Comparative insights into influences of co-contamination by rare-earth elements and heavy metals on soil bacterial and fungal communities. Journal of Soils and Sediments, 22, 2499–2515. https://doi.org/10.1007/s11368-022-03241-9

Lu, R. R., Hu, Z. H., Zhang, Q. L., Li, Y. Q., Lin, M., Wang, X. L., Wu, X. N., Yang, J. T., Zhang, L. Q., Jing, Y. X., & Peng, C. L. (2020). The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Ecotoxicology and Environmental Safety, 203, Article 110988. https://doi.org/10.1016/j.ecoenv.2020.110988

Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental & Experimental Botany, 68, 1–13. https://doi.org/10.1016/j.envexpbot.2009.10.011

McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytologist, 115, 495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

McGrath, S. P., & Zhao, F. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14, 277–282. https://doi.org/10.1016/S0958-1669(03)00060-0

Mei, X., Wang, Y., Li, Z., Larousse, M., Pere, A., da Rocha, M., Zhan, F., He, Y., Pu, L., Panabières, F., & Zu, Y. (2022). Root associated microbiota drive phytoremediation strategies to lead of Sonchus Asper (L.) Hill as revealed by intercropping-induced modifications of the rhizosphere microbiome. Environmental Science and Pollution Research, 29, 23026–23040. https://doi.org/10.1007/s11356-021-17353-1

Melo, C. D., Walker, C., Krüger, C., Borges, P. A. V., Luna, S., Mendonça, D., Fonceca, H. M. A. C., & Machado, A. C. (2019). Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconia azorica on native forest of Azores. Annals of Microbiology, 69, 1309–1327. https://doi.org/10.1007/s13213-019-01535-x

Miransari, M. (2011). Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 29, 645–653. https://doi.org/10.1016/j.biotechadv.2011.04.006

Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., Mäder, P., Wiemken, A., & Boller, T. (2009). Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agriculture, Ecosystems and Environment, 134, 257–268. https://doi.org/10.1016/j.agee.2009.07.008

Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., & Silva, G. A. (2011). Advances in Glomeromycota taxonomy and classification. IMA Fungus, 2, 191–199. https://doi.org/10.5598/imafungus.2011.02.02.10

Orłowska, E., Ryszka, P., Jurkiewicz, A., & Turnau, K. (2005). Effectiveness of arbuscular mycorrhizal fungal (AM fungi) strains in colonisation of plants involved in phytostabilisation of zinc wastes. Geoderma, 129, 92–98. https://doi.org/10.1016/j.geoderma.2004.12.036

Orłowska, E., Przybyłowicz, W., Orlowski, D., Mongwaketsi, N. P., Turnau, K., & Mesjasz-Przybyłowicz, J. (2013). Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler. Environmental Pollution, 175, 100–109. https://doi.org/10.1016/j.envpol.2012.12.028

Park, H., Lee, E., Ka, K., & Eom, A. (2016). Community structures of arbuscular mycorrhizal fungi in soils and plant roots inhabiting abandoned mines of Korea. Mycobiology, 44(4), 277–282. https://doi.org/10.5941/MYCO.2016.44.4.277

Pawlowska, T. E., Błaszkowski, J., & Rühling, Å. (1996). The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza, 6, 499–505. https://doi.org/10.1007/s005720050154

Perrier, N., Amir, H., & Colin, F. (2006). Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza, 16, 449–458. https://doi.org/10.1007/s00572-006-0057-6

Pongrac, P., Vogel-Mikuš, K., Kump, P., Nečemer, M., Tolrà, R., Poschenriederet, C., Barceló, J., & Regvar, M. (2007). Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere, 69, 1602–1609. https://doi.org/10.1016/j.chemosphere.2007.05.046

Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30, 1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

Raklami, A., Meddich, A., Oufdou, K., & Baslam, M. (2022). Plants—microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International Journal of Molecular Sciences, 23, Article 5031. https://doi.org/10.3390/ijms23095031

Rashid, A., Ayub, N., Ahmad, T., Gul, J., & Khan, A. G. (2009). Phytoaccumulation prospects of cadmium and zinc by mycorrhizal plant species growing in industrially polluted soils. Environmental Geochemistry and Health, 31, 91–98. https://doi.org/10.1007/s10653-008-9159-8

Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B., & Walker, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23, 515–531. https://doi.org/10.1007/s00572-013-0486-y

Regvar, M., Vogel, K., Irgel, N., Wraber, T., Hildebrandt, U., Wilde, P., & Bothe, H. (2003). Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. Journal of Plant Physiology, 160, 615–626. https://doi.org/10.1078/0176-1617-00988

Riaz, M., Kamram, M., Fang, Y., Wang, Q., Cao, H., Yang, G., Deng, L., Wang, Y., Zhou, Y., Anastopoulos, I., & Wang, X. (2021). Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Journal of Hazardous Materials, 402, Article 123919. https://doi.org/10.1016/j.jhazmat.2020.123919

Sánchez-Castro, I., Gianinazzi-Pearson, V., Cleyet-Marel, J. C., Baudoin, E., & van Tuinen, D. (2017). Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Science of the Total Environment, 598, 121–128. https://doi.org/10.1016/j.scitotenv.2017.04.084

Shetty, K. G., Banks, M. K., Hetrick, B. A., & Schwab, A. P. (1994). Biological characterization of a southeast Kansas mining site. Water, Air and Soil Pollution, 78, 169–177. https://doi.org/10.1007/BF00475675

Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis (2nd ed.). Academic Press.

Suárez, J. P., Herrera, P., Kalinhoff, C., Vivanco-Galvan, O., & Thangaswamy, S. (2023). Generalist arbuscular mycorrhizal fungi dominated heavy metal polluted soils at two artisanal and small-scale gold mining sites in southeastern Ecuador. BMC Microbiology, 23, Article 42. https://doi.org/10.1186/s12866-022-02748-y

Sun, Y., Zhang, X., Wu, Z., Hu, Y., Wu, S., & Chen, B. (2016). The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. Journal of Environmental Sciences, 39, 110–118. https://doi.org/10.1016/j.jes.2015.10.005

Tang, Y., Qiu, R., Zeng, X., Ying, R., Yu, F., & Zhou, X. (2009). Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environmental and Experimental Botany, 66, 126–134. https://doi.org/10.1016/j.envexpbot.2008.12.016

Tommerup, I. C., & Kidby, D. K. (1979). Preservation of spores of vesicular arbuscular endophytes by L-drying. Applied and Environmental Microbiology, 37, 831–835. https://doi.org/10.1128/aem.37.5.831-835.1979

Turnau, K., Ryszka, P., Gianinazzi-Pearson, V., & van Tuinen, D. (2001). Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza, 10, 169–174. https://doi.org/10.1007/s005720000073

Turnau, K., & Mesjasz-Przybylowicz, J. (2003). Arbuscular mycorr­hiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza, 13, 185–190. https://doi.org/10.1007/s00572-002-0213-6

van der Heyde, M., Ohsowski, B., Abbott, L. K., & Hart, M. (2017). Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza, 27, 431–440. https://doi.org/10.1007/s00572-016-0759-3

Vieira, C. K., Marascalchi, M. N., Rodrigues, A. V., de Armas, R. D., & Stürmer, S. L. (2018). Morphological and molecular diversity of arbuscular mycorrhizal fungi in revegetated iron-mining site has the same magnitude of adjacent pristine ecosystems. Journal of Environmental Sciences, 67, 330–343. https://doi.org/10.1016/j.jes.2017.08.019

Vogel-Mikuš, K., Drobne, D., & Regvar, M. (2005). Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 133, 233–242. https://doi.org/10.1016/j.envpol.2004.06.021

Vogel-Mikuš, K., Pongrac, P., Kump, P., Nečemer, M., & Regvar, M. (2006). Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 139, 362–371. https://doi.org/10.1016/j.envpol.2005.05.005

Wang, L., Wang, G., Ma, F., & You, Y. (2021). Symbiosis between hyperaccumulators and arbuscular mycorrhizal fungi and their synergistic effect on the absorption and accumulation of heavy metals: A review. Chinese Journal of Biotechnology, 37, 3604–3621.

Wei, Y., Hou, H., Li, J., ShangGuan, Y., Xu, Y., Zhang, J., Zhao, L., & Wang, W. (2014). Molecular diversity of arbuscular mycorrhizal fungi associated with an Mn hyperaccumulator–Phytolacca americana, in Mn mining area. Applied Soil Ecology, 82, 11–17. https://doi.org/10.1016/j.apsoil.2014.05.005

Whitfield, L., Richards, A. J., & Rimmer, D. L. (2004). Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza, 14, 55–62. https://doi.org/10.1007/s00572-003-0268-z

Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780. https://doi.org/10.1016/S0045-6535(02)00232-1

Wu, C., Liao, B., Wang, S., Zhang, J., & Li, J. (2010). Pb and Zn accumulation in a Cd-hyperaccumulator (Viola baoshanensis). International Journal of Phytoremediation, 12, 574–585. https://doi.org/10.1080/15226510903353195

Wu, F. Y., Ye, Z. H., Wu, S. C., & Wong, M. H. (2007). Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta, 226, 1363–1378. https://doi.org/10.1007/s00425-007-0575-2

Wu, F. Y., Ye, Z. H., & Wong, M. H. (2009). Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere, 76, 1258–1264. https://doi.org/10.1016/j.chemosphere.2009.05.020

Xu, Y., Seshadri, B., Bolan, N., Sarkar, B., Sik, Ok, Y., Zhang, W., Rumpel, C., Sparks, D., Farrell, M., Hall, T., & Dong, Zh. (2019). Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environment International, 125, 478–488. https://doi.org/10.1016/j.envint.2019.01.071

Yang, W., Li, P., Rensing, C., Ni, W., & Xing, S. (2019). Biomass, activity and structure of rhizosphere soil microbial community under different metallophytes in a mining site. Plant and Soil, 434, 245–262. https://doi.org/10.1007/s11104-017-3546-9

Young, J. P. W. (2012). A molecular guide to the taxonomy of arbuscular mycorrhizal fungi. New Phytologist, 193, 823–826. https://doi.org/10.1111/j.1469-8137.2011.04029.x

Zarei, M., Saleh-Rastin, N., Jouzani, G. S., Savaghebi, G., & Buscot, F. (2008). Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. European Journal of Soil Biology, 44, 381–391. https://doi.org/10.1016/j.ejsobi.2008.06.004

Zarei, M., Hempel, S., Wubet, T., Schäfer, T., Savaghebi, G., Jouzani, G. S., Nekouei, M. K., & Buscotet, F. (2010). Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158, 2757–2765. https://doi.org/10.1016/j.envpol.2010.04.017

Zhong, W., Li, J., Chen, Y., Shu, W., & Liao, B. (2012). A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi. Journal of Environmental Monitoring, 14, 2497–2504. https://doi.org/10.1039/c2em30333g

Zhuang, P., Yang, Q. W., Wang, H. B., & Shu, W. S. (2007). Phytoextraction of heavy metals by eight plant species in the field. Water Air and Soil Pollution, 184, 235–242. https://doi.org/10.1007/s11270-007-9412-2