Share:


Short-term coastal landscape evolution in Cirebon bay using coastline environment analysis

    Raden Yudi Pratama Affiliation
    ; Nana Sulaksana Affiliation
    ; Emi Sukiyah Affiliation
    ; Teuku Yan Waliana Muda Iskandarsyah Affiliation
    ; Franto Novico Affiliation
    ; Zulfahmi Zulfahmi Affiliation
    ; Evi Hadrijati Sudjono Affiliation
    ; Duddy Ranawijaya Affiliation

Abstract

The landscape of Java’s north coast is dominated by a mild slope covered by soft sediment, which faces many environmental issues. These issues have been identified, and the simple technique of overlaying Landsat imagery shows the evolution of the landscape along the coast. Survey campaigns in 2006 and 2018 verified the Landsat overlay, and the 210Pb dating analysis aids in describing the sedimentation rate along the coast. The results demonstrate that accretion evolution dominates exclusively in Cirebon’s coastline landscape, with coastal gains reaching 1463.88 ha over four decades and the sediment rate from 1977–1997 estimated at 0.27–0.33 cm/year. Compared to the earlier decade, the recent two periods from 1998 to 2018 demonstrate a more extensive desire for progressive accretion affected by the longshore sediment transport. Hence, special attention should be paid to the northern coast of Java to estimate the sedimentation rate and the advanced coast.

Keyword : landscape evolution, north Java coast, Cirebon Bay, geoscience data, integrated data, advance coast

How to Cite
Pratama, R. Y., Sulaksana, N., Sukiyah, E., Iskandarsyah, T. Y. W. M., Novico, F., Zulfahmi, Z., Sudjono, E. H., & Ranawijaya, D. (2023). Short-term coastal landscape evolution in Cirebon bay using coastline environment analysis. Journal of Environmental Engineering and Landscape Management, 31(3), 186–195. https://doi.org/10.3846/jeelm.2023.19468
Published in Issue
Aug 2, 2023
Abstract Views
277
PDF Downloads
327
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Andreas, H., Abidin, H. Z., Sarsito, D. A., & Pradipta, D. (2018). Adaptation of ‘early climate change disaster’ to the northern coast of Java Island Indonesia. Engineering Journal, 22(3), 207–219. https://doi.org/10.4186/ej.2018.22.3.207

Baskaran, M., Bianchi, T. S., & Filley, T. R. (2017). Inconsistencies between 14C and short-lived radionuclides-based sediment accumulation rates: Effects of long-term remineralisation. Journal of Environmental Radioactivity, 174, 10–16. https://doi.org/10.1016/j.jenvrad.2016.07.028

Boak, E. H., & Turner, I. L. (2005). Shoreline definition and detection: A review. Journal of Coastal Research, 214, 688–703. https://doi.org/10.2112/03-0071.1

Broce, K., Ruiz-Fernández, A. C., Batista, A., Franco-Ábrego, A. K., Sanchez-Cabeza, J. A., Pérez-Bernal, L. H., & Guerra-Chanis, G. E. (2022). Background concentrations and accumulation rates in sediments of pristine tropical environments. Catena, 214, 106252. https://doi.org/10.1016/j.catena.2022.106252

Catuneanu, O., Abreub, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. S. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., … Winker, C. (2009). Towards the standardization of sequence stratigraphy towards the standardization of sequence stratigraphy. Earth Science Reviews, 92, 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003

Dadson, I. Y., Owusu, A. B., & Adams, O. (2016). Analysis of shoreline change along cape coast-sekondi coast, Ghana. Geography Journal, 2016, 1868936. https://doi.org/10.1155/2016/1868936

Darman, H., & Sidi, F. H. (2000). An outline of the geology of Indonesia (H. Darman & F. Hasan Sidi, Eds.). Indonesian Association of Geologists.

Dean, R. G., & Dalrymple, R. A. (2001). Coastal processes with engineering applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511754500

Dolan, R., Fenster, M. S., & Holme, S. J. (1991). Temporal analysis of shoreline recession and accretion. Journal of Coastal Research, 7(3), 723–744. http://www.jstor.org/stable/4297888

Ervita, K., & Marfai, M. A. (2017). Shoreline change analysis in Demak, Indonesia. Journal of Environmental Protection, 8(8), 940–955. https://doi.org/10.4236/jep.2017.88059

Gardel, A., & Gratiot, N. (2006). Monitoring of coastal dynamics in French Guiana from 16 years of SPOT satellite images. Journal of Coastal Research, 3(39), 1502–1505.

George, J., Sanil Kumar, V., Victor, G., & Gowthaman, R. (2019). Variability of the local wave regime and the wave-induced sediment transport along the Ganpatipule coast, eastern Arabian Sea. Regional Studies in Marine Science, 31, 100759. https://doi.org/10.1016/j.rsma.2019.100759

Hamilton, W. B. (1979). Tectonics of the Indonesian Region (Professional Paper 1078). U.S. Govt. Print. Off. https://doi.org/10.3133/pp1078

Höffken, J., Vafeidis, A. T., MacPherson, L. R., & Dangendorf, S. (2020). Effects of the temporal variability of storm surges on coastal flooding. Frontiers in Marine Science, 7, 1–14. https://doi.org/10.3389/fmars.2020.00098

Jones, G. W. (2013). The 2010–2035 Indonesian population projection: Understanding the causes, consequences and policy options for population and development. UNFPA Indonesia. https://indonesia.unfpa.org/en/publications?page=0%2C8

Kaczmarek, L. M., Ostrowski, R., Pruszak, Z., & Rozynski, G. (2005). Selected problems of sediment transport and morphodynamics of a multi-bar nearshore zone. Estuarine, Coastal and Shelf Science, 62(3), 415–425. https://doi.org/10.1016/j.ecss.2004.09.006

Kumar, A., Narayana, A. C., & Jayappa, K. S. (2010). Shoreline changes and morphology of spits along southern Karnataka, west coast of India: A remote sensing and statistics-based approach. Geomorphology, 120(3–4), 133–152. https://doi.org/10.1016/j.geomorph.2010.02.023

Kumaravel, S., Ramkumar, T., Gurunanam, B., Suresh, M., & Dharanirajan, K. (2013). An application of remote sensing and GIS based shoreline change studies – A case study in the Cuddalore district, East Coast of Tamilnadu, South India. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2(4), 211–216.

Kurt, S., Karaburun, A., & Demirci, A. (2010). Coastline changes in Istanbul between 1987 and 2007. Scientific Research and Essays, 5(19), 3009–3017.

Li, W., & Gong, P. (2016). Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sensing of Environment, 179, 196–209. https://doi.org/10.1016/j.rse.2016.03.031

Longuet-Higgins, M. S. (1970). Longshore currents generated by obliquely incident sea waves: 2. Journal of Geophysical Research, 75(33), 6790–6801. https://doi.org/10.1029/JC075i033p06790

Martínez-Carreño, N., & García-Gil, S. (2017). Reinterpretation of the Quaternary sedimentary infill of the Ría de Vigo, NW Iberian Peninsula, as a compound incised valley. Quaternary Science Reviews, 173, 124–144. https://doi.org/10.1016/j.quascirev.2017.08.015

Menier, D., Tessier, B., Proust, J. N., Baltzer, A., Sorrel, P., & Traini, C. (2010). The Holocene transgression as recorded by incised-valley infilling in a rocky coast context with low sediment supply (southern Brittany, western france). Bulletin de La Societe Geologique de France, 181(2), 115–128. https://doi.org/10.2113/gssgfbull.181.2.115

Meyssignac, B., & Cazenave, A. (2012). Sea level: A review of present-day and recent-past changes and variability. Journal of Geodynamics, 58, 96–109. https://doi.org/10.1016/j.jog.2012.03.005

Novico, F. (2006). Pengembangan Pusat Penelitian dan Pengembangan Geologi Kelautan Cirebon sebagai Marine Center Tahap II.

Novico, F., & Rahardjo, P. (2012). Desain Kapasitas Tiang Pancang Bulat Pada Lapis Sedimen Kohesif di Perairan Pantai Utara Cirebon Pada Rencana As Jetty Marine Center PPPGL Cirebon Jawa Barat. Jurnal Geologi Kelautan, 10(1). https://doi.org/10.32693/jgk.10.2.2012.219

Novico, F., Endyana, C., Menier, D., Mathew, M., Kurniawan, I., Bachtiar, H., Ranawijaya, D., & Hendarmawan, H. (2021a). The dynamic coastal evidence of Jakarta Bay during Late Pleistocene-Recent. IOP Conference Series: Earth and Environmental Science, 930(1), 1–13. https://doi.org/10.1088/1755-1315/930/1/012002

Novico, F., Menier, D., Mathew, M., Ramkumar, M., Santosh, M., Endyana, C., Dewi, K. T., Kurniawan, I., Lambert, C., Goubert, E., & Hendarmawan. (2021b). Impact of Late Quaternary climatic fluctuations on coastal systems: Evidence from high-resolution geophysical, sedimentological and geochronological data from the Java Island. Marine and Petroleum Geology, 136, 105399. https://doi.org/10.1016/j.marpetgeo.2021.105399

Novico, F., Siddik, D. A., Lufiandi, Albab, A., Mulia, A., Kusnida, D., Komarudin, R. A., Ranawijaya, D., Kamariah, I., Endyana, C., Bachtiar, H., & Hendarmawan. (2021c). Interdisciplinary approach for qualitatively monitoring coastline dynamics in North Java Coast, Case study: Karawang Regency Indonesia. IOP Conference Series: Earth and Environmental Science, 944(1), 012050. https://doi.org/10.1088/1755-1315/944/1/012050

Páez-Osuna, F., & Mandelli, E. F. (1985). 210Pb in a tropical coastal lagoon sediment core. Estuarine, Coastal and Shelf Science, 20(3), 367–374. https://doi.org/10.1016/0272-7714(85)90048-4

Pian, S., & Menier, D. (2011). The use of a geodatabase to carry out a multivariate analysis of coastline variations at various time and space scales. Journal of Coastal Research, (64), 1722–1726.

Pilkey, O. H., & Cooper, J. A. G. (2014). Are natural beaches facing extinction? Journal of Coastal Research, 70, 431–436. https://doi.org/10.2112/SI70-073.1

Quang, D. N., Ngan, V. H., Tam, H. S., Viet, N. T., Tinh, N. X., & Tanaka, H. (2021). Long-term shoreline evolution using dsas technique: A case study of Quang Nam province, Vietnam. Journal of Marine Science and Engineering, 9(10), 1124. https://doi.org/10.3390/jmse9101124

Reineck, H., & Singh, I. (1980). Depositional sedimentary environments. Springer-Verlag. https://doi.org/10.1007/978-3-642-81498-3

Restrepo, J. C., Schrottke, K., Traini, C., Ortíz, J. C., Orejarena, A., Otero, L., Higgins, A., & Marriaga, L. (2016). Sediment transport and geomorphological change in a high-discharge tropical delta (Magdalena River, Colombia): Insights from a period of intense change and human intervention (1990-2010). Journal of Coastal Research, 32(3), 575–589. https://doi.org/10.2112/JCOASTRES-D-14-00263.1

Rizzo, A., & Anfuso, G. (2020). Coastal dynamic and evolution: Case studies from different sites around the world. Water, 12(10), 2829. https://doi.org/10.3390/w12102829

Salahuddin, M., Astjario, P., & Lubis, S. (2001). Compilation map of surficial sediment distribution of the Java Sea, Western Indonesian Waters.

Sathiamurthy, E., & Voris, K. H. (2006). Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. The Natural History Journal of Chulalongkorn University, 2, 1–44.

Schaffner, L. C., Dellapenna, T. M., Hinchey, E. K., Friedrichs, C. T., Neubauer, M. T., Smith, M. E., & Kuehl, S. A. (2001). Physical energy regimes, seabed dynamics, and organism-sediment interactions along an estuarine gradient. Organism-Sediment Interactions, 21, 159–179.

Silitonga, P. H., & Masria, M. (1978). Geological map of the Cirebon quadrangle, West Java 1:100.000. GRDC, Bandung.

Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) Version 4.0 – An ArcGIS extension for calculating shoreline change. U.S. Geological Survey. https://doi.org/10.3133/ofr20081278

Toorman, E. A., Anthony, E., Augustinus, P. G. E. F., Gardel, A., Gratiot, N., Homenauth, O., Huybrechts, N., Monbaliu, J., Moseley, K., & Naipal, S. (2018). Interaction of mangroves, coastal hydrodynamics, and morphodynamics along the coastal fringes of the Guianas. In Coastal Research Library (Vol. 25). Springer. https://doi.org/10.1007/978-3-319-73016-5_20

Vail, P. R., Mitchum, R. M., & Thompson, S. (1977). Seismic stratigraphy and global change in sea level, part 3: Relative change of sea level from coastal onlap. In C. E. Payton (Ed.), Seismic stratigraphy – Applications to hydrocarbon exploration, American Association of Petroleum Geologists: Vol. Memoir 26 (pp. 63–81).

Van Rijn, L. C. (2011). Coastal erosion and control. Ocean and Coastal Management, 54(12), 867–887. https://doi.org/10.1016/j.ocecoaman.2011.05.004

van Rijn, L. C., Wasltra, D. J. R., Grasmeijer, B., Sutherland, J., Pan, S., & Sierra, J. P. (2003). The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coastal Engineering, 47(3), 295–327. https://doi.org/10.1016/S0378-3839(02)00120-5

Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A., & Turner, I. L. (2019). Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coastal Engineering, 150, 160–174. https://doi.org/10.1016/j.coastaleng.2019.04.004

Williams, S. J. (2013). Sea-level rise implications for coastal regions. Journal of Coastal Research, 63, 184–196. https://doi.org/10.2112/SI63-015.1

Xu, N. (2018). Detecting coastline change with all available landsat data over 1986-2015: A case study for the state of Texas, USA. Atmosphere, 9(3), 107. https://doi.org/10.3390/atmos9030107

Yasuda, I. (2018). Impact of the astronomical lunar 18.6-yr tidal cycle on El-Niño and Southern Oscillation. Scientific Reports, 8(1), 4–11. https://doi.org/10.1038/s41598-018-33526-4