Share:


Metagenomic analysis of microbial consortium GF-20 in corn stover degradation at low temperature

    Bi-zhou Zhang Affiliation
    ; Qinggeer Borjigin Affiliation
    ; Ju-lin Gao Affiliation
    ; Xiao-fang Yu Affiliation
    ; Shu-ping Hu Affiliation
    ; Fu-gui Wang Affiliation
    ; Xin Zhang Affiliation
    ; Sheng-cai Han Affiliation

Abstract

In our previous work, a microbial consortium GF-20 (Qinggeer et al., 2016) was enriched from compost habitats and adapted to efficiently and stably degrade corn stover under low temperatures. While the main microorganism and degradation-related functions and degradation-related coding enzyme genes of GF-20 were not clear. Therefore, the current study used the metagenomic to decipher the systematic and functional contexts within such microbial consortium under low temperatures. The results showed that the dominant functional microbials in GF-20 consortium were bacteria. The dominant phylums in GF-20 consortium were Proteobacteria (62.84%) and Bacteroidetes (10.24%). The dominant genus was Pseudomonas (50.84%), followed by Dysgonomonas (5.86%), Achromobacter (4.94%), Stenotrophomonas (3.67%) and Flavobacterium (2.04%). The metabolism was mainly composed of carbohydrate metabolism and amino acid metabolism, and included signal transduction, cell transport and other metabolic modes. The functional genes encoded were mainly distributed in glycosidolytic enzyme genes, and the functional enzymes were β-glucosidase, acetyl-CoA, pyruvate dehydrogenase and galactosidase. The GF-20 microbial consortium degraded the cellulose in corn stover primarily by β-glucosidase and endoglucanase, which were produced by 12 genera of microorganisms. The hemicellulose synergistic effect was produced by 15 genera of microorganisms including xylanase, xyloglucanase, mannolanase and branching enzyme.

Keyword : metagenomic, microbial consortium, low temperature, corn stover degradation

How to Cite
Zhang, B.- zhou, Borjigin, Q., Gao, J.- lin, Yu, X.- fang, Hu, S.- ping, Wang, F.- gui, Zhang, X., & Han, S.- cai. (2023). Metagenomic analysis of microbial consortium GF-20 in corn stover degradation at low temperature. Journal of Environmental Engineering and Landscape Management, 31(1), 92–102. https://doi.org/10.3846/jeelm.2023.18489
Published in Issue
Mar 15, 2023
Abstract Views
259
PDF Downloads
246
SM Downloads
120
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Allgaier, M., Reddy, A., Park, J. I., Ivanova, N., D’haeseleer, P., Lowry, S., Sapra R., Hazen, T. C., Simmons, B. A., Vander­Gheynst, J. S., & Hugenholtz, P. (2010). Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS ONE, 5, e8812. https://doi.org/10.1371/journal.pone.0008812

Bekele, A. Z., Koike, S., & Kobayashz, Y. (2011). Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16SrRNA gene-based analysis. FEMS Microbiology Letters, 316(1), 51–60. https://doi.org/10.1111/j.1574-6968.2010.02191.x

Berlemont, R., & Martiny, A. C. (2013). Phylogenetic distribution of potential cellulases in bacteria. Applied and Environmental Microbiology, 79(5), 1545–1554. https://doi.org/10.1128/AEM.03305-12

Ciccarelli, F. D., Doerks, T., Von Mering, C., Creevey, C. J., Snel, B., & Bork, P. (2006). Toward automatic reconstruction of a highly resolved tree of life. Science, 311(5765), 1283–1287. https://doi.org/10.1126/science.1123061

Fierer, N., & Lennon, J. T. (2011). The generation and maintenance of diversity in microbial communities. American Journal of Botany, 98(3), 439–448. https://doi.org/10.3732/ajb.1000498

Ghanem, N., B., Mabrouk, M. E. S., Sabry, S. A., & El-Ba­dan, D. E. S. (2005). Degradation of polyesters by a novel marine Nocardiopsis aegyptia sp. nov.: Application of Plac­kett-Burman experimental design for the improvement of PHB depolymerase activity. The Journal of General and Applied Microbiology, 51(3), 151–158. https://doi.org/10.2323/jgam.51.151

Gilbert, J. A., & Dupont, C. L. (2011). Microbila metagenomices: Beyond the genome. Annual Review of Marine Science, 3, 347–371. https://doi.org/10.1146/annurev-marine-120709-142811

Gosalbes, M. J., Durban, A., Pignatelli, M., Abellan, J. J., Jiménez-Hernández, N., Pérez-Cobas, A. E., Latorre, A., & Moya, A. (2011). Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS ONE, 6(3), e17447. https://doi.org/10.1371/journal.pone.0017447

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, 5(10), R245–R249. https://doi.org/10.1016/S1074-5521(98)90108-9

Heitkamp, M. A., Freeman, J. P., Miller, D. W., & Cerniglia, C. E. (1988). Pyrene degradation by a Mycobacterium sp.: Identification of ring oxidation and ring fission products. Applied and Environmental Microbiology, 54(10), 2556–2565. https://doi.org/10.1128/aem.54.10.2556-2565.1988

Heylen, K., Vanparys, B., Peirsegaele, F., Lebbe, L., & De Vos, P. (2007). Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 57(9), 2056–2061. https://doi.org/10.1099/ijs.0.65044-0

Himmel, M. E., Xu, Q., Luo, Y., Ding, S.-Y., Lamed, R., & Bayer, E. A. (2010). Microbial enzyme systems for biomass conversion: Emerging paradigms. Biofuels, 1(2), 323–341. https://doi.org/10.4155/bfs.09.25

Hugenholtz, P., & Tyson, G. W. (2008). Metagenomics. Nature, 455, 481–483. https://doi.org/10.1038/455481a

Hyatt, D., LoCascio, P. F., Hauser, L. J., & Uberbacher, E. C. (2012). Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics, 28(17), 2223–2230. https://doi.org/10.1093/bioinformatics/bts429

Jensen, L. J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T., & Bork, P. (2008). eggNOG: Automated construction and annotation of orthologous groups of genes. Nucleic Acids Research, 36(1), D250–D254. https://doi.org/10.1093/nar/gkm796

Jiménez, D. J., Dini-Andreote, F., & van Elsas, J. D. (2014). Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnology for Biofuels, 7, 92. https://doi.org/10.1186/1754-6834-7-92

Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27

Koeck, D. E., Pechtl, A., Zverlov, V. V., & Schwarz, W. H. (2014). Genomics of cellulolytic bacteria. Current Opinion in Biotechnology, 29, 171–183. https://doi.org/10.1016/j.copbio.2014.07.002

Kong, X.-K., Chen, D., Huang, J.-W., Cheng, X.-K., & Jiang, J.-D. (2019). Chitinophaga deserti sp. nov., isolated from desert soil. International Journal of Systematic and Evolutionary Microbiology, 69(6), 1783–1788. https://doi.org/10.1099/ijsem.0.003395

Kubicek, C. P., Mikus, M., Schuster, A., Schmoll, M., & Seiboth, B. (2009). Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnology for Biofuels, 2, 19. https://doi.org/10.1186/1754-6834-2-19

Lee, H. J., Jeong, S. E., Cho, M.-S., Kim, S. H., Lee, S.-S., Lee, B. H., & Jeon, C. O. (2014). Flavihumibacter solisilvae sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 64(8), 2897–2901. https://doi.org/10.1099/ijs.0.063669-0

Li, P., Wang, L., & Feng, L. (2013). Characterization of a novel Rieske-type alkane monooxygenase system in Pusillimonas sp. strain T7-7. Journal of Bacteriology, 195(9), 1892–1901. https://doi.org/10.1128/JB.02107-12

Li, X., Song, L., Wang, G., Ren, L., Yu, D., Chen, G., Wang, X., Yu, J., Liu, G., & Du, Z. (2016). Complete genome sequence of a deeply branched marine Bacteroidia bacterium Draconibacterium orientale type strain FH5T. Marine Genomics, 26, 13–16. https://doi.org/10.1016/j.margen.2016.01.002

Liu, L., Liang, L., Xu, L., Chi, M., Zhang, X., & Li, L. (2020). Rhizobium deserti sp. nov isolated from biological soil crusts collected at mu Us sandy land, China. Current Microbiology, 77(2), 327–333. https://doi.org/10.1007/s00284-019-01831-4

Liu, Z., Liu, H., Liu, X., & Wu, X. (2008). Purification and cloning of a novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 149(4), 557–567. https://doi.org/10.1016/j.cbpb.2007.10.002

Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology, 3(2), 208–2018. https://doi.org/10.1016/S0022-2836(61)80047-8

Marqués, S., & Ramos, J. L. (1993). Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Molecular Microbiology, 9(5), 923–935. https://doi.org/10.1111/j.1365-2958.1993.tb01222.x

Mhuantong, W., Charoensawan, V., Kanokratana, P., Tangphatsornruang, S., & Champreda, V. (2015). Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnology for Biofuels, 8, 16. https://doi.org/10.1186/s13068-015-0200-8

Ming, H. (2011). Microbiology. Zhejiang University Press.

Papa, G., Rodriguez, S., George, A., Schievano, A., Orzi, V., Sale, K. L., Singh, S., Adani, F., & Simmons, B. A. (2015). Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresource Technology, 183, 101–110. https://doi.org/10.1016/j.biortech.2015.01.121

Poidevin, L., Berrin, J.-G., Bennati-Granier, C., Levasseur, A., Herpoël-Gimbert, I., Chevret, D., Coutinho, P. M., Henrissat, B., Heiss-Blanquet, S., & Record, E. (2014). Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes. Applied Microbiology and Biotechnology, 98(17), 7457–7469. https://doi.org/10.1007/s00253-014-5698-3

Purushe, J., Fouts, D. E., Morrison, M., White, B. A., Mac­kie, R. I., the North American Consortium for Rumen Bacteria, Coutinho, P. M., Henrissat, B., & Nelson, K. E. (2010). Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: Insights into their environmental niche. Microbial Ecology, 60(4), 721–729. https://doi.org/10.1007/s00248-010-9692-8

Qinggeer, Gao, J.-l., Yu, X.-f., Zhang, B.-l., Wang, Z.-g., Naoganchaolu, B., Hu, S.-p., Sun, J.-y., Xie, M., & Wang, Z. (2016). Screening of a microbial consortium with efficient corn stover degradation ability at low temperature. Journal of Integrative Agriculture, 15(10), 2369–2379. https://doi.org/10.1016/S2095-3119(15)61272-2

Ridderberg, W., Wang, M., & Nørskov-Lauritsen N. (2012). Multilocus sequence analysis of isolates of Achromobacter from patients with cystic fibrosis reveals infecting species other than Achromobacter xylosoxidans. Journal of Clinical Microbiology, 50(8), 2688–2694. https://doi.org/10.1128/JCM.00728-12

Scholz, M. B., Lo, C.-C., & Chain, P. S. G. (2012). Next generation sequencing and bioinformatics bottlenecks: The current state of metagenomic data analysis. Current Opinion in Biotechnology, 23(1), 9–15. https://doi.org/10.1016/j.copbio.2011.11.013

Shen, L., Liu, Y., Xu, B., Wang, N., Zhao, H., Liu, X., & Liu, F. (2017). Comparative genomic analysis reveals the environmental impacts on two Arcticibacter strains including sixteen Sphingobacteriaceae species. Scientific Reports, 7, 2055. https://doi.org/10.1038/s41598-017-02191-4

Shivaji, S., Ara, S., Prasad, S., Manasa, B. P., Begum, Z., Singh, A., & Kumar Pinnaka, A. (2013). Draft genome sequence of Arcticibacter svalbardensis strain MN12-7T, a member of the family Sphingobacteriaceae isolated from an arctic soil sample. Genome Announcements, 1(4), 10–11. https://doi.org/10.1128/genomeA.00484-13

Sim, M., & Kim, J. (2015). Metagenome assembly through clustering of next-generation sequencing data using protein sequences. Journal of Microbiological Methods, 109, 180–187. https://doi.org/10.1016/j.mimet.2015.01.002

Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S., Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., … Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11(11), 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x

Sly, L. I., Taghavi, M., & Fegan, M. (1999). Phylogenetic position of Chitinophaga pinensis in the Flexibacter-Bacteroides-Cytophaga phylum. International Journal of Systematic Bacteriology, 49(2), 479–481. https://doi.org/10.1099/00207713-49-2-479

Stolze, Y., Zakrzewski, M., Maus, I., Eikmeyer, F., Jaenicke, S., Rottmann, N., Siebner, C., Pühler, A., & Schlüter, A. (2015). Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnology for Biofuels, 8, 14. https://doi.org/10.1186/s13068-014-0193-8

Székely, A. J., Sipos, R., Berta, B., Vajna, B., Hajdú, C., & Mária­ligeti, K. (2009). DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. Microbial Ecology, 57, 522–2533. https://doi.org/10.1007/s00248-008-9424-5

Tringe, S. G., & Rubin, E. M. (2005). Metagenomics: DNA sequencing of environmental samples. Nature Reviews Genetics, 6, 805–814. https://doi.org/10.1038/nrg1709

Van der Lelie, D., Taghavi, S., McCorkle, S. M., Li, L.-L., Malfatti, S. A., Monteleone, D., Donohoe, B. S., Ding, S.-Y., Adney, W. S., Himmel, M. E., & Tringe, S. G. (2012). The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS ONE, 7, e36740. https://doi.org/10.1371/journal.pone.0036740

Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Ri­chard­son, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, H. G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., … Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(7169), 560–565. https://doi.org/10.1038/nature06269

Wolfenden, B. S., & Willson, R. L. (1982). Radical-cations as reference chromogens in Kinetic studies of one-electron transfer reactions: Pulse radiolysis of 2, 2’-azinobis(3-ethylbenzthiazoline-6-sulphonate). Journal of the Chemical Society, Perkin Transactions, 2, 805–812. https://doi.org/10.1039/P29820000805

Yan, X., Yan, H., Liu, Z., Liu, X., Mo, H., & Zhang, L. (2011). Nocardiopsis yanglingensis sp. nov., a thermophilic strain isolated from a compost of button mushrooms. Antonie van Leeuwenhoek, 35(01), 32–39. https://doi.org/10.1007/s10482-011-9597-7

Yang, C., Xia, Y., Qu, H., Li, A.-D., Liu, R., Wang, Y., & Zhang, T. (2016). Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnology for Biofuels, 9, 138. https://doi.org/10.1186/s13068-016-0557-3

Zhang, J., Siika-aho, M., Tenkanen, M., & Viikari, L. (2011). The role of acetyl xylan esterase in the soluilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnology for Biofuels, 4, 60. https://doi.org/10.1186/1754-6834-4-60

Zhang, L., Ma, H., Zhang, H., Xun, L., Chen, G., & Wang, L. (2015). Thermomyces lanuginosus is the dominant fungus in maize straw composts. Bioresource Technology, 197, 266–275. https://doi.org/10.1016/j.biortech.2015.08.089

Zhu, N., Yang, J., Ji, L., Liu, J., Yang, Y., & Yuan, H. (2016). Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. Biotechnology for Biofuels, 9, 243. https://doi.org/10.1186/s13068-016-0658-z

Zinger, L., Gobet, A., & Pommier, T. (2012). Two decades of describing the unseen majority of aquatic microbial diversity. Molecular Ecology, 21, 1878–1896. https://doi.org/10.1111/j.1365-294X.2011.05362.x