Ecological security measurement based on functionality-organization-stability in inland of Three Gorges Reservoir area

    Likun Zhan Affiliation
    ; Xianhua Guo Affiliation
    ; Tingzhen Li Affiliation
    ; Xi Liu Affiliation
    ; Chendong Lu Affiliation
    ; Na Zhang Affiliation
    ; Zenghui Lu Affiliation


The spatial-temporal heterogeneity of landscape ecological security has been carried out for the Zhong County in this work based on the framework of “functionality-organization-stability” using the multidate Landsat TM image of 2000, 2006, 2012 and 2018 as the basic data. During the research period, landscape ecological security situation in Zhong County indicates a trend of deteriorating. The high ecological security zone was constantly shifting to the low ecological security zone from 2000 to 2018. The ratios were 13.40%, 61.32%, 28.34%, and 13.33%. The low ecological security area in research area focuses on the northeast part and middle part, while the high-security area focuses on Yangtze river way and its both sides and Northwest. The main obstacle factor of landscape ecological security transfers into stability from functionality. Therefore it suggests to optimize land use pattern in landscape planning and construction in the future in order to raise the landscape ecological security level.

Keyword : landscape ecological security, landscape index, spatial autocorrelation, obstacle degree

How to Cite
Zhan, L., Guo, X., Li, T., Liu, X., Lu, C., Zhang, N., & Lu, Z. (2022). Ecological security measurement based on functionality-organization-stability in inland of Three Gorges Reservoir area. Journal of Environmental Engineering and Landscape Management, 30(3), 433–449.
Published in Issue
Nov 8, 2022
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Bai, J., Zhou, Z., Zou, Y., Pulatov, B., & Siddique, K. H. M. (2021). Watershed drought and ecosystem services: Spatiotemporal characteristics and gray relational analysis. ISPRS International Journal of Geo-Information, 10(2), 43.

Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology & Evolution, 28(4), 230–238.

Carlier, J., & Moran, J. (2019). Landscape typology and ecological connectivity assessment to inform Greenway design. Science of the Total Environ-ment, 651(Part 2), 3241–3252.

Chen, X. Y. (2015). Research on land use/cover dynamic simulation and landscape evaluation. China Agricultural Science and Technology Press.

Chu, X., Deng, X., Jin, G., Wang, Z., & Li, Z. (2017). Ecological security assessment based on ecological footprint approach in Beijing-Tianjin-Hebei region, China. Physics and Chemistry of the Earth, Parts A/B/C, 101, 43–51.

Čuček, L., Klemeš, J. J., Varbanov, P. S., & Kravanja, Z. (2015). Significance of environmental footprints for evaluating sustainability and security of development. Clean Technologies and Environmental Policy, 17(8), 2125–2141.

Feng, Y., Yang, Q., Tong, X., & Chen, L. (2018). Evaluating land ecological security and examining its relationships with driving factors using GIS and generalized additive model. Science of the Total Environment, 633, 1469–1479.

Fu, B.-J., Chen, L.-D., Ma, K.-M., & Wang, Y.-L. (2011). Principles and application of landscape ecology. Science Press.

Gao, J. M., Wu, L., Chen, Y. P., Zhou, B., Guo, J. S., Zhang, K., & Ouyang, W. J. (2017). Spatiotemporal distribution and risk assessment of organ-otins in the surface water of the Three Gorges Reservoir Region, China. Chemosphere, 171, 405–414.

Guo, S., & Wang, Y. (2019). Ecological security assessment based on ecological footprint approach in Hulunbeir grassland, China. International Jour-nal of Environmental Research Public Health, 16(23), 4805.

Hazbavi, Z., Sadeghi, S. H., Gholamalifard, M., & Davudi­rad, A. A. (2019). Watershed health assessment using the pressure–state–response (PSR) framework. Land Degradation & Development, 31(1), 3–19.

Jin, Y., Li, A., Bian, J., Nan, X., Lei, G., & Muhammad, K. (2021). Spatiotemporal analysis of ecological vulnerability along Bangla-desh-China-India-Myanmar economic corridor through a grid level prototype model. Ecological Indicators, 120, 106933.

Ke, X., Wang, X., Guo, H., Yang, C., Zhou, Q., & Mougharbel, A. (2021). Urban ecological security evaluation and spatial correlation research based on data analysis of 16 cities in Hubei Province of China. Journal of Cleaner Production, 311, 127613.

Kovacs-Hostyanszki, A., Espindola, A., Vanbergen, A. J., Settele, J., Kremen, C., & Dicks, L. V. (2017). Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecology Letters, 20(5), 673–689.

Kuchma, T., Tarariko, O., & Syrotenko, O. (2013). Landscape diversity indexes application for agricultural land use optimization. Procedia Technology, 8, 566–569.

Li, J.-X., Chen, Y.-N., Xu, C.-C., & Li, Z. (2019a). Evaluation and analysis of ecological security in arid areas of Central Asia based on the emergy ecological footprint (EEF) model. Journal of Cleaner Production, 235, 664–677.

Li, Z. T., Yuan, M. J., Hu, M. M., Wang, Y. F., & Xia, B. C. (2019b). Evaluation of ecological security and influencing factors analysis based on ro-bustness analysis and the BP-DEMALTE model: A case study of the Pearl River Delta urban agglomeration. Ecological Indicators, 101, 595–602.

Li, Y., Yang, N., Qian, B., Yang, Z., Liu, D., Niu, L., & Zhang, W. (2018). Development of a bacteria-based index of biotic integrity (Ba-IBI) for as-sessing ecological health of the Three Gorges Reservoir in different operation periods. Science of the Total Environment, 640–641, 255–263.

Liu, T., & Xu, D. (2015). Case study of landscape ecology: River landscape pattern and ecological vulnerability assessment. Science Press.

López-Pujol, J., & Ren, M.-X. (2009). Biodiversity and the Three Gorges Reservoir: A troubled marriage. Journal of Natural History, 43(43–44), 2765–2786.

Lu, S., Li, J., Guan, X., Gao, X., Gu, Y., Zhang, D., Mi, F., & Li, D. (2018). The evaluation of forestry ecological security in China: Developing a decision support system. Ecological Indicators, 91, 664–678.

Lu, S., Qin, F., Chen, N., Yu, Z., Xiao, Y., Cheng, X., & Guan, X. (2019). Spatiotemporal differences in forest ecological security warning values in Beijing: Using an integrated evaluation index system and system dynamics model. Ecological Indicators, 104, 549–558.

Lu, S., Tang, X., Guan, X., Qin, F., Liu, X., & Zhang, D. (2020). The assessment of forest ecological security and its determining indicators: A case study of the Yangtze River Economic Belt in China. Journal of Environmental Management, 258, 110048.

Ma, L., Bo, J., Li, X., Fang, F., & Cheng, W. (2019). Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Science of the Total Environment, 674, 424–438.

Huang, J., Yu, H., Han, D., Zhang, G., Wei, Y., Huang, J., An, L., Liu, X., & Ren, Y. (2020). Declines in global ecological security under climate change. Ecological Indicators, 117, 106651–106658.

Ou, D. H., Xia, J. H., Yao, X. Z., & Liu, T. (2019). Theories, methods and applications of landscape ecological security pattern planning. Science Press.

Ou, Z. R., Sun, Y. Y., & Zhu, Q. K. (2018). Research on ecological security assessment of yuanmoudry-hot valley. Science Press.

Patel, N., & Rawat, A. (2015). Comparative assessment between area based and patch based Gibbs-Martin diversification index for land use pattern analysis. Theoretical & Empirical Researches in Urban Management, 10(4), 66–76.

Pyles, M. V., Magnago, L. F. S., Borges, E. R., Van Den Berg, E., & Carvalho, F. A. (2020). Land use history drives differences in functional compo-sition and losses in functional diversity and stability of Neotropical urban forests. Urban Forestry & Urban Greening, 49, 126608.

Qian, R., Zhang, S., Peng, C., Zhang, L., Yang, F., Tian, M., Huang, R., Wang, Q., Chen, Q., Yao, X., & Chen, Y. (2020). Characteristics and potential exposure risks of environmentally persistent free radicals in PM2.5 in the three gorges reservoir area, Southwestern China. Chemosphere, 252, 126425.

Ren, H., Shang, Y., & Zhang, S. (2020). Measuring the spatio­temporal variations of vegetation net primary productivity in Inner Mongolia using spa-tial autocorrelation. Ecological Indicators, 112, 106108.

Ruan, W., Li, Y., Zhang, S., & Liu, C.-H. (2019). Evaluation and drive mechanism of tourism ecological security based on the DPSIR-DEA model. Tourism Management, 75, 609–625.

Sharma, K., Acharya, B. K., Sharma, G., Valente, D., Pasime­ni, M. R., Petrosillo, I., & Selvan, T. (2020). Land use effect on butterfly alpha and beta diversity in the Eastern Himalaya, India. Ecological Indicators, 110, 105605.

Shi, Y., Li, J., & Xie, M. (2018). Evaluation of the ecological sensitivity and security of tidal flats in Shanghai. Ecological Indicators, 85, 729–741.

Strain, E. M. A., Morris, R. L., Bishop, M. J., Tanner, E., Steinberg, P., Swearer, S. E., Macleod, C., & Alexander, K. A. (2019). Building blue infra-structure: Assessing the key environmental issues and priority areas for ecological engineering initiatives in Australia’s metropolitan embayments. Journal of Environmental Management, 230, 488–496.

Turner, M. G. (2005). Landscape ecology North America: Past, present, and future. Ecology, 86(8), 1967–1974.

Vizcaíno-Bravo, Q., Williams-Linera, G., & Asbjornsen, H. (2020). Biodiversity and carbon storage are correlated along a land use intensity gradient in a tropical montane forest watershed, Mexico. Basic and Applied Ecology, 44, 24–34.

Wang, H., Wang, H. E., Sun, H., Wang, X., Liao, X., Chen, Z., & Li, X. (2012). Assessment of the ecological security in the three gorges reservoir area by using the ecological footprint method. Journal of Mountain Science, 9(6), 891–900.

Wang, Y., & Pan, J. (2019). Building ecological security patterns based on ecosystem services value reconstruction in an arid inland basin: A case study in Ganzhou District, NW China. Journal of Cleaner Production, 241, 118337.

Wei, S., Pan, J., & Liu, X. (2018). Landscape ecological safety assessment and landscape pattern optimization in arid inland river basin: Take Ganzhou District as an example. Human and Ecological Risk Assessment: An International Journal, 26(3), 782–806.

Wen, J., & Hou, K. (2021). Research on the progress of regional ecological security evaluation and optimization of its common limitations. Ecological Indicators, 127, 107797.

Wu, J.-G. (2007). Langscape ecology—pattern, process, scale and hierarchy (2nd ed.). Higher Education Press.

Wu, J. (2011). Studies on the evolution of use patten of lakeshores in Wuhan. Advanced Materials Research, 250–253, 3554–3558.

Wu, L., & Xie, B. (2019). The variation differences of cultivated land ecological security between flatland and mountainous areas based on LUCC. PLoS ONE, 14(8), e0220747.

Wu, Z., Liu, T., Xia, M., & Zeng, T. (2021). Sustainable livelihood security in the Poyang Lake Ecological Economic Zone: Identifying spatial-temporal pattern and constraints. Applied Geography, 135, 102553.

Xie, G. D., Zhang, C. X., Zhang, L. M., Chen, W. H., & Li, S. M. (2015). Improvement of the evaluation method for ecosystem service value based on per unit area. Journal of Natural Resources, 30(8), 1243–1254.

Xie, H., He, Y., Choi, Y., Chen, Q., & Cheng, H. (2020). Warning of negative effects of land-use changes on ecological security based on GIS. Science of the Total Environment, 704, 135427.

Xu, C., Pu, L., Zhu, M., Li, J., Chen, X., Wang, X., & Xie, X. (2016). Ecological security and ecosystem services in response to land use change in the coastal area of Jiangsu, China. Sustainability, 8(8), 816.

Xu, X., Yang, G., Tan, Y., Liu, J., Zhang, S., & Bryan, B. (2020). Unravelling the effects of large-scale ecological programs on ecological rehabilitation of China’s Three Gorges Dam. Journal of Cleaner Production, 256, 120446.

Xu, Q., Wang, W., & Mo, L. (2018). Evaluation of landscape stability in Beijing-Tianjin-Hebei region. Acta Ecologica Sinica, 38(12), 4226–4233.

Yang, Z., & Wang, Y. (2020). The cloud model based stochastic multi-criteria decision making technology for river health assessment under multiple uncertainties. Journal of Hydrology, 581, 124437.

Zhang, C., Luo, L., Xu, W., & Ledwith, V. (2008). Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Science of the Total Environment, 398(1–3), 212–221.

Zhang, Q., Chen, C., Wang, J., Yang, D., Zhang, Y., Wang, Z., & Gao, M. (2020a). The spatial granularity effect, changing landscape patterns, and suitable landscape metrics in the Three Gorges Reservoir Area, 1995–2015. Ecological Indicators, 114, 106259.

Zhang, R., & Liu, Y. Z. (2013). Evaluation on cultivated land ecological security based on the PSR model and diagnosis of its obstacle indicators in China. Resources and Environment in the Yangtze Basin, 22(7), 945–951.

Zhang, W., Chang, W. J., Zhu, Z. C., & Hui, Z. (2020b). Landscape ecological risk assessment of Chinese coastal cities based on land use change. Applied Geography, 117, 102174.

Zhao, X., Li, T. Y., Zhang, T. T., Luo, W. J., & Li, J. Y. (2017). Distribution and health risk assessment of dissolved heavy metals in the Three Gorges Reservoir, China (section in the main urban area of Chongqing). Environmental Science and Pollution Research, 24(3), 2697–2710.

Zhi, Y. R., Zhong, X. Z., Xiao, Y. L., Zhan, F. W., & Yi, J. S. (2017). Effects of land use change and ecological security in the Northwest River Valley Basin. Science Press.

Zhu, Y., Delgado-Baquerizo, M., Shan, D., Yang, X., Liu, Y., & Eldridge, D. J. (2020). Diversity-productivity relationships vary in response to in-creasing land-use intensity. Plant and Soil, 450, 511–520.