Share:


Simultaneous solar photo-degradation of PVC-Fe-doped ZnO-nanocomposite flakes and Methylene Blue dye in water

    Anirban Roy Affiliation
    ; Sampa Chakrabarti Affiliation
    ; Saikat Maitra Affiliation

Abstract

Simultaneous solar photocatalytic decolorization  of Methlene Blue (MB) dye and degradation of polymer nanocomposite film in water has been attempted in the present work. The film immobilized iron (Fe)-doped zinc oxide (ZnO) nanoparticles (NPs) in polyvinyl chloride (PVC) matrix. This reduced the cost of separation of nanoparticles from treated water. Doped NPs were prepared sonochemically using zinc acetylacetonate (0.95 mmol) and ferric acetylacetonate (0.05 mmol) precursors in aqueous ethanol medium. XRD, UV-vis spectroscopy, FESEM and EDX were used for characterizing nanoparticles whereas the film was characterized by SEM. During the process, the film also reduced in weight. Degradation of both the dye and the polymer followed pseudo-first order kinetics. About 28% of the initial concentration of dye and about 5.04% of the initial weight of the PVC-film were decreased in the process after a run time of 3 h 45 minutes.

Keyword : solar photocatalysis, degradation, MB dye, Fe-doped ZnO nanoparticles, PVC-immobilized

How to Cite
Roy, A., Chakrabarti, S., & Maitra, S. (2022). Simultaneous solar photo-degradation of PVC-Fe-doped ZnO-nanocomposite flakes and Methylene Blue dye in water. Journal of Environmental Engineering and Landscape Management, 30(2), 268-275. https://doi.org/10.3846/jeelm.2022.16743
Published in Issue
May 25, 2022
Abstract Views
71
PDF Downloads
73
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahmad, M., Ahmed, E., Hong, Z. L., Jiao, X. L., Abbas, T., & Khalid, N. R. (2013). Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes. Applied Surface Science, 285(Part B), 702–712. https://doi.org/10.1016/j.apsusc.2013.08.114

Ai, Z. H., Huang, Y. H., Lee, S. C., & Zhang, L. Z. (2011). Monoclinic Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. Journal of Alloys and Compounds, 509(5), 2044–2049. https://doi.org/10.1016/j.jallcom.2010.10.132

An, Y., Hou, J., Liu, Z., & Peng, B. (2014). Enhanced solid-phase photocatalytic degradation by TiO2-MWCNTs nanocomposites. Materials Chemistry and Physics, 148(1–2), 387–394. https://doi.org/10.1016/j.matchemphys.2014.08.001

Chakrabarti, S., & Dutta, B. K. (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials, 112(3), 269–278. https://doi.org/10.1016/j.jhazmat.2004.05.013

Chakrabarti, S., & Dutta, B. K. (2008). Dye-sensitised photocatalytic degradation of PVC-ZnO composite film. International Journal of Environmental Technology and Management, 9(1), 34–46. https://doi.org/10.1504/IJETM.2008.017858

Chakrabarti, S., Chaudhuri, B., Bhattacharjee, S., Das, P., & Dutta, B. K. (2008). Degradation mechanism and kinetic model for photocatalytic oxidation of PVC–ZnO composite film in presence of a sensitizing dye and UV radiation. Journal of Hazardous Materials, 154(1–3), 230–236. https://doi.org/10.1016/j.jhazmat.2007.10.015

Chakrabarti, S., Liu, X., Li, C., Banerjee, P., Maitra, S., & Swi­hart, M. T. (2015). Synthesis of iron-doped zinc oxide nanoparticles by simple heating: Influence of precursor composition and temperature. International Journal of Materials Engineering Innovation, 6(1), 18–31. https://doi.org/10.1504/IJMATEI.2015.069798

Chen, Y. W., Liu, Y. C., Lu, S. X., Xu, C. S., Shao, C. L., Wang, C., Zhang, J. Y., Lu, Y. M., Shen, D. Z., & Fan, X. W. (2005). Optical properties of ZnO and ZnO: Al in nanorods assembled by sol-gel method. The Journal of Chemical Physics, 123(13), 134701–134705. https://doi.org/10.1063/1.2009731

Chen, Y., & Dionysiou, D. D. (2006). TiO2 photocatalytic films on stainless steel: The role of Degussa P-25 in modified sol–gel methods. Applied Catalysis B: Environmental, 62(3–4), 255–264. https://doi.org/10.1016/j.apcatb.2005.07.017

Cho, S., & Choi, W. (2001). Solid-phase photocatalytic degradation of PVC–TiO2 polymer composites. Journal of Photochemistry and Photobiology A: Chemistry, 143(2–3), 221–228. https://doi.org/10.1016/S1010-6030(01)00499-3

Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

Choy, C. C., Wazne, M., & Meng, X. (2008). Application of an empirical transport model to simulate retention of nanocrystalline titanium dioxide in sand columns. Chemosphere, 67(9), 1794–1801. https://doi.org/10.1016/j.chemosphere.2007.12.030

Das, P., Roy, A., & Chakrabarti, S. (2017). Photocatalytic degradation of the nanocomposite film comprising polyvinyl chloride (PVC) and sonochemically synthesized iron-doped zinc oxide: A comparative study of performances between sunlight and UV radiation. Journal of Polymers and the Environment, 25(4), 1231–1241. https://doi.org/10.1007/s10924-016-0894-0

Fa, W., Zan, L., Gong, C., Zhong, J., & Deng, K. (2008). Solid-phase photocatalytic degradation of polystyrene with TiO2 modified by iron (II) phthalocyanine. Applied Catalysis B: Environmental, 79(3), 216–223. https://doi.org/10.1016/j.apcatb.2007.10.018

Fu, M., Li, Y., Wu, S., Lu, P., Liu, J., & Dong, F. (2011). Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Applied Surface Science, 258(4), 1587–1591. https://doi.org/10.1016/j.apsusc.2011.10.003

Hong, N. H., Sakai, J., & Briz, V. (2007). Observation of ferromagnetism at room temperature in ZnO thin films. Journal of Physics: Condensed Matter, 19(3), 036219. https://doi.org/10.1088/0953-8984/19/3/036219

Horikoshi, S., Watanabe, N., Onishi, H., Hidaka, H., & Serpone, N. (2002). Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO2 immobilized fiber glass cloth. Applied Catalysis B: Environmental, 37(2), 117–129. https://doi.org/10.1016/S0926-3373(01)00330-7

Hosseini, S. N., Borghei, S. M., Vossough, M., & Taghavinia, N. (2007). Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 74, 53–62. https://doi.org/10.1016/j.apcatb.2006.12.015

Jung, D. (2010). Syntheses and characterization of transition metal-doped ZnO. Solid State Sciences, 12(4), 466–470. https://doi.org/10.1016/j.solidstatesciences.2009.12.009

Khan, S. A., Arshad, Z., Shahid, S., Arshad, I., Rizwan, K., Sher, M., & Fatima, U. (2019). Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Composites Part B: Engineering, 175, 107120. https://doi.org/10.1016/j.compositesb.2019.107120

Khan, S. A., Noreen, F., Kanwal, S., Iqbal, A., & Hussain, G. (2018). Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Materials Science and Engineering: C, 82, 46–59. https://doi.org/10.1016/j.msec.2017.08.071

Khataee, A., Soltani, R. D. C., Karimi, A., & Joo, S. W. (2015). Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrasonics Sonochemistry, 23, 219–230. https://doi.org/10.1016/j.ultsonch.2014.08.023

Kolesnik, S., Dabrowski, B., & Mais, J. (2004). Structural and magnetic properties of transition metal substituted ZnO. Journal of Applied Physics, 95(5), 2582–2586. https://doi.org/10.1063/1.1644638

Kong, J. Z., Li, A. D., Zhai, H. F., Gong, Y. P., Li, H., & Wu, D. (2009). Preparation, characterization of the Ta-doped ZnO nanoparticles and their photocatalytic activity under visible-light illumination. Journal of Solid State Chemistry, 182(8), 2061–2067. https://doi.org/10.1016/j.jssc.2009.03.022

Lim, L. L. P., Lynch, R. J., & In, S.-I. (2009). Comparison of simple and economical photocatalyst immobilisation procedures. Applied Catalysis A: General, 365(2), 214–221. https://doi.org/10.1016/j.apcata.2009.06.015

Omidi, A., Habibi-Yangjeh, A., & Pirhashemi, M. (2013). Application of ultrasonic irradiation method for preparation of ZnO nanostructures doped with Sb+3 ions as a highly efficient photocatalyst. Applied Surface Science, 276(1), 468–475. https://doi.org/10.1016/j.apsusc.2013.03.118

Patrício Silva, A. L., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal, 405, 126683. https://doi.org/10.1016/j.cej.2020.126683

Patterson, A. L. (1939). The Scherrer formula for X-ray particle size determination. Physical Review, 56(10), 978–982. https://doi.org/10.1103/PhysRev.56.978

Phuruangrat, A., Yayapao, O. Thongtem, T., & Thongtem, S. (2014). Preparation, characterization and photocatalytic properties of Ho doped ZnO nanostructures synthesized by sonochemical method. Superlattices and Microstructures, 67, 118–126. https://doi.org/10.1016/j.spmi.2013.12.023

Poulios, I., & Tsachpinis, I. (1999). Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides. Journal of Chemical Technology and Biotechnology, 74(4), 349–357. https://doi.org/10.1002/(SICI)1097-4660(199904)74:4<349::AID-JCTB5>3.0.CO;2-7

Roy, A., Maitra, S., Ghosh, S., & Chakrabarti, S. (2016). Sonochemically synthesized iron-doped zinc oxide nanoparticles: influence of precursor composition on characteristics. Materials Research Bulletin, 74, 414–420. https://doi.org/10.1016/j.materresbull.2015.11.006

Royaee, S. J., & Sohrabi, M. (2010). Application of photo-impinging streams reactor indegradation of phenol in aqueous phase. Desalination, 253, 57–61. https://doi.org/10.1016/j.desal.2009.11.033

Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77(1), 65–82. https://doi.org/10.1016/S0927-0248(02)00255-6

Sakthivel, S., Shankar, M. V., Palanichamy, M., Arabindoo, B., & Murugesan, V. (2002). Photocatalytic decomposition of leather dye: comparative study of TiO2 supported on alumina and glass beads. Journal of Photochemistry and Photobiology A: Chemistry, 148(1–3), 153–159. https://doi.org/10.1016/S1010-6030(02)00085-0

Shang, J., Chai, M., & Zhu, Y. (2003). Photocatalytic degradation of polystyrene plastic under fluorescent light. Environmental Science & Technology, 37(19), 4494–4499. https://doi.org/10.1021/es0209464

Sher, M., Khan, S. A., Shahid, S., Javed, M., Qamar, M. A., Chinnathambi, A., & Almoallim, H. S. (2021). Synthesis of novel ternary hybrid g-C3N4@Ag-ZnO nanocomposite with Z-scheme enhanced solar light-driven methylene blue degradation and antibacterial activities. Journal of Environmental Chemical Engineering, 9(4), 105366. https://doi.org/10.1016/j.jece.2021.105366

Shi, J., Zheng, J., Wu, P., & Ji, X. (2008). Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size. Catalysis Communications, 9(9), 1846–1850. https://doi.org/10.1016/j.catcom.2008.02.018

Sil, D., & Chakrabarti, S. (2010). Photocatalytic degradation of PVC-ZnO composite film under tropical sunlight and artificial UV radiation: A comparative study. Solar Energy, 84(3), 476–485. https://doi.org/10.1016/j.solener.2009.09.012

Thomas, R. T., Nair, V., & Sandhyarani, N. (2013). TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: A mechanistic investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422, 1–9. https://doi.org/10.1016/j.colsurfa.2013.01.017

Thongjamroon, S., Ding, J., Herng, T. S., Tang, I. M., & Thongmee, S. (2017). Dependence of the magnetic properties of the dilute magnetic semiconductor Zn1-xMnxO nanorods on their Mn doping levels. Journal of Magnetism and Magnetic Materials, 439, 391–396. https://doi.org/10.1016/j.jmmm.2017.04.087

Wang, X., Yao, S., & Li, X. (2009). Sol‐gel preparation of CNT/ZnO nanocomposite and its photocatalytic property. Chinese Journal of Chemistry, 27(7), 1317–1320. https://doi.org/10.1002/cjoc.200990220

Zainudin, N. F., Abdullah, A. Z., & Mohamed, A. R. (2010). Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol. Journal of Hazardous Materials, 174(1–3), 299–306. https://doi.org/10.1016/j.jhazmat.2009.09.051

Zhang, K., Cao, W., & Zhang, J. (2004). Solid-phase photocatalytic degradation of PVC by Tungstophosphoric acid—a novel method for PVC plastic degradation. Applied Catalysis A: General, 276(1–2), 67–73. https://doi.org/10.1016/j.apcata.2004.07.056

Zhao, X., Li, Z., Chen, Y., Shi, L., & Zhu, Y. (2007). Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. Journal of Molecular Catalysis A: Chemical, 268(1–2), 101–106. https://doi.org/10.1016/j.molcata.2006.12.012