Share:


The impact of earthworks on older trees in historical parks

    Jan Łukaszkiewicz   Affiliation
    ; Beata Fortuna-Antoszkiewicz Affiliation
    ; Jacek Borowski   Affiliation

Abstract

The publication aims to investigate the quantitative impact of linear earthworks in urban parks, e.g. during roads’ and pavements’ modernization in the old trees’ root zones, on the increment in their external parameters (e.g. trunk circumference). Pilot studies (Warsaw, Poland) were carried out 2003–2019 in two historical parks: Ursynów and Królikarnia. The dataset of trees’ parameters is based on detailed dendrological inventories. Test groups consisted of trees exposed to damage and not exposed to damage (Ursynów) and the control group – trees growing in unchanged site conditions (Królikarnia). Among the three most abundant species of dendroflora, Norway maples (Acer platanoides L.) show the most visible difference (>1.8 cm) between the normal and the inhibited growth in trunk circumference. Two other species – black locusts (Robinia pseudoacacia L.) and small-leaved limes (Tilia cordata Mill.) – also revealed statistically significant differences in the increment of the trunk circumference (respectively: >1.3 cm and >1.4 cm). In general, the reaction of affected trees was a significant reduction of circumference increments from 2.6 to 4.0 times concerning trees not exposed to damage. The verification made with the resistograph in 2019 confirmed a statistically significant decrease in radial increments of trees remaining in the impact zone of the earthworks.

Keyword : historical parks, earthworks, tree growth, root zone, landscape management, environmental sustainability

How to Cite
Łukaszkiewicz, J., Fortuna-Antoszkiewicz, B., & Borowski, J. (2022). The impact of earthworks on older trees in historical parks. Journal of Environmental Engineering and Landscape Management, 30(1), 188-194. https://doi.org/10.3846/jeelm.2022.16354
Published in Issue
Mar 18, 2022
Abstract Views
90
PDF Downloads
109
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Chojnacki, J. (1990). Mapa roślinności potencjalnej Warszawy 1:50000. Zakład Fitosocjologii i Ekologii Roślin, Instytut Botaniki Uniwersytetu Warszawskiego, WZKart, Warsaw.

Coder, K. D. (2000). Soil compaction & trees: Causes, symptoms & effects. University of Georgia School of Forest Resources. https://urbanforestrysouth.org/resources/library/citations/Citation.2004-07-21.3250

Day, S. D., Wiseman, P. E., Dickinson, S. B., & Harris, J. R. (2010). Contemporary concepts of root system architecture of urban trees. Arboriculture & Urban Forestry, 36(4), 149–159. https://doi.org/10.48044/jauf.2010.020

Dobbertin, M. (2005). Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. European Journal of Forest Research, 124, 319–333. https://doi.org/10.1007/s10342-005-0085-3

Dujesiefken, D., Fay, N., de Groot, J. W., & de Berker, N. (2016). Drzewa w cyklu życia. Europejscy praktycy na rzecz arborystyki. Fundacja EkoRozwoju. http://drzewa.org.pl/wp-content/uploads/2018/05/Drzewa_w_cyklu_zycia.pdf

Fortuna-Antoszkiewicz, B., Gawłowska, A., Łukaszkiewicz, J., & Rosłon-Szeryńska, E. (2012). Aspects of renewal and protection of historical parks in city centers based on Krasiński Garden in Warsaw (in Polish). Technical Transactions. Architecture, 109(19), 145–166.

Hilber, D. R., North, E. A., Hauer, R. J., Koeser, A. K., McLean, D. C., Northrop, R. J., Andreu, M., & Parbs, S. (2020). Predicting trunk flare diameter to prevent tree damage to infrastructure. Urban Forestry & Urban Greening, 49, 126645. https://doi.org/10.1016/j.ufug.2020.126645

Institute of Spatial Policy and Housing. (2018). Warsaw ecophysiographic atlas. Capital City of Warsaw. http://architektura.um.warszawa.pl/atlas-ekofizjograficzny

Lonsdale, D. (Ed.). (2013). Ancient and other veteran trees: Further guidance on management. The Tree Council. https://ancienttreeforum.co.uk/wp-content/uploads/2015/02/ATF_book.pdf

Lucke, T., & Beecham, S. (2019). An infiltration approach to reducing pavement damage by street trees. Science of the Total Environment, 671, 94–100. https://doi.org/10.1016/j.scitotenv.2019.03.357

Łukaszkiewicz, J., & Kosmala, M. (2008). Determining the age of streetside trees with diameter at breast height-based multifactorial model. Arboriculture & Urban Forestry, 34(3), 137–143. https://doi.org/10.48044/jauf.2008.018

McPherson, E. G. & Peper, P. (2012) Urban tree growth modeling. Arboriculture & Urban Forestry, 38(5), 172–180. https://doi.org/10.48044/jauf.2012.026

Mencuccini, M., Martinez-Vilalta, J., Vanderklein, D., Hamid, H. A., Korakaki, E., Lee, S., & Michiels, B. (2005). Size-mediated ageing reduces vigor in trees. Ecology Letters, 8(11), 1183–1190. https://doi.org/10.1111/j.1461-0248.2005.00819.x

North, E. A., Johnson, G. R., & Burk, T. E. (2015). Trunk flare diameter predictions as an infrastructure planning tool to reduce tree and sidewalk conflicts. Urban Forestry & Urban Greening, 14(1), 65–71. https://doi.org/10.1016/j.ufug.2014.11.009

Randrup, T. B., McPherson, E. G., & Costello, L. R. (2001). A review of tree root conflicts with sidewalks, curbs, and roads. Urban Ecosystems, 5(3), 209–225. https://doi.org/10.1023/A:1024046004731

Rosłon-Szeryńska, E., Łukaszkiewicz, J., & Fortuna-Antoszkiewicz, B. (2018). The possibility of predicting the collision of trees with construction investments. VI International Conference of Science and Technology INFRAEKO 2018 Modern Cities. Infrastructure and Environment, 45, 00076. https://doi.org/10.1051/e3sconf/20184500076

Stratópoulos, L. M. F., Zhang, C., Häberle, K. H., Pauleit, S., Duthweiler, S., Pretzsch, H., & Rötzer, T. (2019). Effects of drought on the phenology, growth, and morphological development of three urban tree species and cultivars. Sustainability, 11(18), 5117. https://doi.org/10.3390/su11185117

Watson, G. W., & Hewitt, A. M. (2012). The relationship between structural root depth and vigor of urban trees. Arboriculture & Urban Forestry, 38(1), 13–17. https://doi.org/10.48044/jauf.2012.003