Share:


Comparison of remaining coal-burning ash-based on Cd, Pb, and Hg concentration at different temperatures: a case study in Aceh Province

    Asri Gani Affiliation
    ; Erdiwansyah Erdiwansyah Affiliation
    ; R. E. Sardjono Affiliation
    ; Mariana Mariana Affiliation
    ; Rizalman Mamat Affiliation

Abstract

This study aims to investigate the efficiency level of absorption of heavy metals Cd, Pb, and Hg. Combustion is carried out using coal with the addition of absorbent ratios of 2%, 4%, 6%, 8%, and 10%. The adsorbent used is natural zeolite which is widely available and inexpensive. This study provides practical implications for the easy and inexpensive removal of heavy metal emissions during combustion. The results show that the maximum efficiency level for Cd metal reached 22.96% which was recorded at a temperature of 600 °C for an adsorbent ratio of 10%. The maximum efficiency level of Pb metal from the experimental results was obtained at a temperature of 600 °C with an adsorbent ratio of 10% to 10.83%. Meanwhile, the efficiency level for Hg metal produced was 0.05% which was recorded at the adsorbent ratio of 10% at 800 °C. The maximum total capacity of Pb metal for each tested combustion temperature was 600 °C 39.85 mg/kg, 700 °C 25.43 mg/kg, and 800 °C 7.21 mg/kg. On the other words, the higher the combustion temperature tested, the lower the absorption efficiency rate obtained.

Keyword : briquets, coal-burning, metal, combustion, efficiency

How to Cite
Gani, A., Erdiwansyah, E., Sardjono, R. E., Mariana, M., & Mamat, R. (2022). Comparison of remaining coal-burning ash-based on Cd, Pb, and Hg concentration at different temperatures: a case study in Aceh Province. Journal of Environmental Engineering and Landscape Management, 30(3), 342-349. https://doi.org/10.3846/jeelm.2022.16294
Published in Issue
Aug 5, 2022
Abstract Views
49
PDF Downloads
37
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bi, X., Feng, Y., Wu, J., Wang, Y., & Zhu, T. (2007). Source apportionment of PM10 in six cities of northern China. Atmospheric Environment, 41(5), 903–912. https://doi.org/10.1016/j.atmosenv.2006.09.033

Cheng, X., Long, R., Chen, H., & Li, Q. (2019). Coupling coordination degree and spatial dynamic evolution of a regional green competitiveness system – A case study from China. Ecological Indicators, 104, 489–500. https://doi.org/10.1016/j.ecolind.2019.04.003

Dai, S., Ren, D., Chou, C.-L., Finkelman, R. B., Seredin, V. V., & Zhou, Y. (2012). Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94, 3–21. https://doi.org/10.1016/j.coal.2011.02.003

Diehl, S. F., Goldhaber, M. B., & Hatch, J. R. (2004). Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama. International Journal of Coal Geology, 59(3–4), 193–208. https://doi.org/10.1016/j.coal.2004.02.003

Dittert, I. M., Maranhão, T. A., Borges, D. L. G., Vieira, M. A., Welz, B., & Curtius, A. J. (2007). Determination of Mercury in biological samples by cold vapor atomic absorption spectrometry following cloud point extraction with salt-induced phase separation. Talanta, 72(5), 1786–1790. https://doi.org/10.1016/j.talanta.2007.02.012

Erdiwansyah, E., Mahidin, M., Husni, H., Nasaruddin, N., Khairil, K., Zaki, M., & Jalaluddin, J. (2021). Investigation of availability, demand, targets, and development of renewable energy in 2017–2050: A case study in Indonesia. International Journal of Coal Science & Technology, 8, 483–499. https://doi.org/10.1007/s40789-020-00391-4

Erdiwansyah, Mahidin, Mamat, R., Sani, M. S. M., Khoerunnisa, F., & Kadarohman, A. (2019a). Target and demand for renewable energy across 10 ASEAN countries by 2040. The Electricity Journal, 32(10), 106670. https://doi.org/10.1016/j.tej.2019.106670

Erdiwansyah, Mamat, R., Sani, M. S. M., & Sudhakar, K. (2019b). Renewable energy in Southeast Asia: Policies and recommendations. Science of the Total Environment, 670, 1095–1102. https://doi.org/10.1016/j.scitotenv.2019.03.273

Finkelman, R. B., Palmer, C. A., & Wang, P. (2018). Quantification of the modes of occurrence of 42 elements in coal. International Journal of Coal Geology, 185, 138–160. https://doi.org/10.1016/j.coal.2017.09.005

Fouda-Mbanga, B. G., Prabakaran, E., & Pillay, K. (2021). Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: A review. Biotechnology Reports, 30, e00609. https://doi.org/10.1016/j.btre.2021.e00609

Fu, W., Wang, X., & Huang, Z. (2019). Remarkable reusability of magnetic Fe3O4-encapsulated C3N3S3 polymer/reduced graphene oxide composite: A highly effective adsorbent for Pb and Hg ions. Science of the Total Environment, 659, 895–904. https://doi.org/10.1016/j.scitotenv.2018.12.303

Gani, A., Wattimena, Y., Erdiwansyah, Mahidin, Muhibbuddin, & Riza, M. (2021). Simultaneous sulfur dioxide and mercury removal during low-rank coal combustion by natural zeolite. Heliyon, 7(5), e07052. https://doi.org/10.1016/j.heliyon.2021.e07052

Goodarzi, F., & Huggins, F. E. (2001). Monitoring the species of arsenic, chromium and nickel in milled coal, bottom ash and fly ash from a pulverized coal-fired power plant in western Canada. Journal of Environmental Monitoring, 3(1), 1–6. https://doi.org/10.1039/b006733o

Hower, J. C., Eble, C. F., & Quick, J. C. (2005). Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies. International Journal of Coal Geology, 62(4), 223–236. https://doi.org/10.1016/j.coal.2005.02.008

Jiang, S., Xi, J., Deng, W., Dai, H, Fang, G., & Wu, W. (2020). Low-cost and high-wet-strength paper-based lignocellulosic adsorbents for the removal of heavy metal ions. Industrial Crops and Products, 158, 112926. https://doi.org/10.1016/j.indcrop.2020.112926

Jones, T., Wlodarczyk, A., Koshy, L., Brown, P., Longyi, S., & BeruBe, K. (2009). The geochemistry and bioreactivity of fly-ash from coal-burning power stations. Biomarkers, 14(Sup1), 45–48. https://doi.org/10.1080/13547500902965195

Kan, H., Chen, R., & Tong, S. (2012). Ambient air pollution, climate change, and population health in China. Environment International, 42, 10–19. https://doi.org/10.1016/j.envint.2011.03.003

Kementerian Energi dan Sumber Daya Mineral Republik Indonesia. (2016). Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 13 Tahun 2016 tentang Organisasi dan Tata Kerja Kementerian Energi dan Sumber Daya Mineral. https://peraturan.bpk.go.id/Home/Details/143302/permen-esdm-no-13-tahun-2016

Kementerian Energi dan Sumber Daya Mineral. (2019). Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 11 Tahun 2019 Tentang Perubahan Kedua Atas Peraturan Menteri energi dan Sumber Daya Mineral Nomor 25 Tahun 2018 Tentang Pengusahaan Pertambangan Mineral dan Batubara. https://peraturan.bpk.go.id/Home/Details/142232/permen-esdm-no-11-tahun-2019

Li, W., Deng, G., Li, M., Liu, X., & Wang, Y. (2012). Roles of mucosal immunity against Mycobacterium tuberculosis infection. Tuberculosis Research and Treatment, 2012, 791728. https://doi.org/10.1155/2012/791728

Lo, F.-C., Lee, M.-G., & Lo, S.-L. (2021). Effect of coal ash and rice husk ash partial replacement in ordinary Portland cement on pervious concrete. Construction and Building Materials, 286, 122947. https://doi.org/10.1016/j.conbuildmat.2021.122947

Mahidin, M. (2009). Biomass utilisation in selected Asian countries: Policy, R&D and status. In National Conference on Biomass Utilization for Alternative Energy and Chemicals. Universitas Katolik Parahyangan, Bandung.

Menteri Energi Dan Sumber Daya Mineral. (2006). Pedoman Pembuatan Dan Pemanfaatan Briket Batubara Dan Bahan Bakar Padat Berbasis Batubara (SNI 047). https://jdih.maritim.go.id/en/peraturan-menteri-energi-dan-sumber-daya-mineral-no-47-tahun-2006

Pian, W., Cheng, W., Niu, H., & Fan, J. (2016). TEM study of fine particles from coal-fired power plant ambient air. World Journal of Engineering, 13(4), 311–316. https://doi.org/10.1108/WJE-08-2016-042

Shao, L. Y., Wang, J., Hou, H. H., Zhang, M. Q., Wang, H., Spiro, B., Large, D., & Zhou, Y. P. (2015). Geochemistry of the C1 Coal of Latest permian during mass extinction in Xuanwei, Yunnan. Acta Geologica Sinica, 89(1), 163–79.

Shen, G., Chen, Y., Wei, S., Fu, X., Zhu, Y., & Tao, S. (2013). Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions. Atmospheric Environment, 79, 79–84. https://doi.org/10.1016/j.atmosenv.2013.05.082

Shen, M., Hu, T., Huang, W., Song, B., Qin, M., Yi, H., Zeng, G., & Zhang, Y. (2021). Can incineration completely eliminate plastic wastes? An investigation of microplastics and heavy metals in the bottom ash and fly ash from an incineration plant. Science of the Total Environment, 779, 146528. https://doi.org/10.1016/j.scitotenv.2021.146528

Shi, J., Huang, W., Chen, P., Tang, S., & Chen, X. (2018). Concentration and distribution of cadmium in coals of China. Minerals, 8(2), 48. https://doi.org/10.3390/min8020048

Tang, Y., Chang, C., Zhang, Y., & Li, W. (2009). Migration and distribution of fifteen toxic trace elements during the coal washing of the Kailuan Coalfield, Hebei Province, China. Energy Exploration & Exploitation, 27(2), 143–152. https://doi.org/10.1260/0144-5987.27.2.143

Wei, L., Yue, S., Zhao, W., Yang, W., Zhang, Y., Ren, L., Han, X., Guo, Q., Sun, Y., Wang, Z., & Fu, P. (2018). Stable sulfur isotope ratios and chemical compositions of fine aerosols (PM2.5) in Beijing, China. Science of the Total Environment, 633, 1156–1164. https://doi.org/10.1016/j.scitotenv.2018.03.153

Xie, S. D., Liu, Z., Chen, T., & Hua, L. (2008). Spatiotemporal variations of ambient PM10 source contributions in Beijing in 2004 using positive matrix factorization. Atmospheric Chemistry and Physics, 8(10), 2701–2716. https://doi.org/10.5194/acp-8-2701-2008

Xie, X., Ai, H., & Deng, Z. (2020). Impacts of the scattered coal consumption on PM2.5 pollution in China. Journal of Cleaner Production, 245, 118922. https://doi.org/10.1016/j.jclepro.2019.118922

Yan, R., Gauthier, D., & Flamant, G. (2000). Possible interactions between As, Se, and Hg during coal combustion. Combustion and Flame, 120(1–2), 49–60. https://doi.org/10.1016/S0010-2180(99)00079-6

Yang, J.-y. (2010). Acid removal rate of trace elements and its organic-inorganic affinity in coal – in a case of the Late Paleozoic coal seam 5 from Weibei. Journal of Fuel Chemistry and Technology, 38(5), 522–527.