Multi-objective sustainability optimization of CCHP systems considering the discreteness of equipment capabilities

    Xusheng Ren Affiliation
    ; Shimin Ding Affiliation
    ; Lichun Dong Affiliation
    ; Lixiao Qin Affiliation


The value of waste heat had led to an extensive study on Combined Cooling, Heating and Power (CCHP) system in recent decades, but the following three research gaps still need to be tackled to achieve a better economic and environmental performance. Firstly, the complete discreteness of equipment capabilities had not been considered. It means that multiple units with different capacities cannot be selected for a type of equipment. Then, the ambiguity and subjectivity existing in decision-makers/stakeholders’ judgments on the importance of objectives are usually ignored. Finally, an easily understood and comprehensive environmental indicator based on life cycle perspective for system optimization had not been established. Thus, the aim of this study is to establish a mathematical framework to help the stakeholders select the optimal configurations, capacities, and operation conditions of CCHP system while narrowing the above three research gaps to avoid the sub-optimal solutions. Subsequently, a hypothetical case was used to verify the validity of the proposed model, along with analysis of system performance. The results indicate that the CCHP system is superior to the conventional systems, and the proposed mathematical model in this paper can improve the performance of CCHP system in terms of economy, environment, and energy.

Keyword : combined cooling, heating and power, fuzzy, multi-objective, eco-costs, sustainability, discreteness of equipment capabilities

How to Cite
Ren, X., Ding, S., Dong, L., & Qin, L. (2021). Multi-objective sustainability optimization of CCHP systems considering the discreteness of equipment capabilities. Journal of Environmental Engineering and Landscape Management, 29(2), 162-177.
Published in Issue
May 31, 2021
Abstract Views
PDF Downloads
SM Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Al Moussawi, H., Fardoun, F., & Louahlia-Gualous, H. (2016). Review of tri-generation technologies: Design evaluation, optimization, decision-making, and selection approach. Energy Conversion and Management, 120, 157–196.

Brizga, J., Hubacek, K., & Feng, K. (2020). The unintended side effects of bioplastics: Carbon, land, and water footprints. One Earth, 3(1), 45–53.

Brough, D., & Jouhara, H. (2020). The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids, 1–2, 100007.

Carreras, J., Boer, D., Cabeza, L. F., Jiménez, L., & Guillén-Gosálbez, G. (2016). Eco-costs evaluation for the optimal design of buildings with lower environmental impact. Energy and Buildings, 119, 189–199.

Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. Journal of Operational Research, 95(3), 649–55.

Cho, H., Smith, A. D., & Mago, P. (2014). Combined cooling, heating and power: A review of performance improvement and optimization. Applied Energy, 136, 168–185.

Choudhary, D., & Shankar, R. (2012). An STEEP-fuzzy AHPTOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510–521.

Corominas, L., Byrne, D., Guest, J. S., Hospido, A., Roux, P., Shaw, A., & Short, M. D. (2020). The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review. Water Research, 184, 116058.

Di Somma, M., Yan, B., Bianco, N., Graditi, G., Luh, P. B., Mongibello, L., & Naso, V. (2017). Multi-objective design optimization of distributed energy systems through cost and exergy assessments. Applied Energy, 204, 1299–1316.

Ecocostsvalue, Ecocostsvalue. (2017).

Ghadimi, P., Azadnia, A. H., Mohd Yusof, N., & Mat Saman, M. Z. (2012). A weighted fuzzy approach for product sustainability assessment: A case study in automotive industry. Journal of Cleaner Production, 33, 10–21.

Goglio, P., Williams, A. G., Balta-Ozkan, N., Harris, N. R. P., Williamson, P., Huisingh, D., Zhang, Z., & Tavoni, M. (2020). Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. Journal of Cleaner Production, 244, 118896.

Jiang, X. Z., Zheng, D., & Mi, Y. (2015). Carbon footprint analysis of a combined cooling heating and power system. Energy Conversion and Management, 103, 36–42.

Jing, R., Wang, M., Wang, W., Brandon, N., Li, N., Chen, J., & Zhao, Y. (2017). Economic and environmental multi-optimal design and dispatch of solid oxide fuel cell based CCHP system. Energy Conversion and Management, 154, 365–379.

Jing, Y.-Y., Bai, H., & Wang, J.-J. (2012a). Multi-objective optimization design and operation strategy analysis of BCHP system based on life cycle assessment. Energy, 37(1), 405–416.

Jing, Y.-Y., Bai, H., Wang, J.-J., & Liu, L. (2012b). Life cycle assessment of a solar combined cooling heating and power system in different operation strategies. Applied Energy, 92, 843–853.

Li, Y., Tian, R., Wei, M., Xu, F., Zheng, S., Song, P., & Yang, B. (2020). An improved operation strategy for CCHP system based on high-speed railways station case study. Energy Conversion and Management, 216, 112936.

Liu, X., Nguyen, M. Q., Chu, J., Lan, T., & He, M. (2020). A novel waste heat recovery system combing steam Rankine cycle and organic Rankine cycle for marine engine. Journal of Cleaner Production, 265, 121502.

Mano, T. B., Jiménez, L., & Ravagnani, M. A. S. S. (2017). Incorporating life cycle assessment eco-costs in the optimization of heat exchanger networks. Journal of Cleaner Production, 162, 1502–1517.

Marquant, J. F., Evins, R., Bollinger, L. A., & Carmeliet, J. (2017). A holarchic approach for multi-scale distributed energy system optimisation. Applied Energy, 208, 935–953.

Mestre, A., & Vogtlander, J. (2013). Eco-efficient value creation of cork products: An LCA-based method for design intervention. Journal of Cleaner Production, 57, 101–114.

Moser, S., & Lassacher, S. (2020). External use of industrial waste heat – An analysis of existing implementations in Austria. Journal of Cleaner Production, 264, 121531.

Nami, H., Anvari-Moghaddam, A., & Arabkoohsar, A. (2020). Application of CCHPs in a centralized domestic heating, cooling and power network – Thermodynamic and economic implications. Sustainable Cities and Society, 60, 102151.

Norwood, Z., & Kammen, D. (2012). Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water. Environmental Research Letters, 7(4), 044016.

Olabi, A. G., Elsaid, K., Rabaia, M. K. H., Askalany, A. A., & Abdelkareem, M. A. (2020). Waste heat-driven desalination systems: Perspective. Energy, 209, 119373.

Onovwiona, H. I., & Ugursal, V. I. (2006). Residential cogeneration systems: Review of the current technology. Renewable and Sustainable Energy Reviews, 10(5), 389–431.

Partnership, USEPACHaP. (2017). Catalog of CHP technologies.

Piacentino, A., Barbaro, C., Cardona, F., Gallea, R., & Cardona, E. (2013). A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part I: Description of the method. Applied Energy, 111, 1204–1221.

Ren, J., & Lützen, M. (2015). Fuzzy multi-criteria decisionmaking method for technology selection for emissions reduction from shipping under uncertainties. Transportation Research Part D: Transport and Environment, 40, 43–60.

Song, Z., Liu, T., & Lin, Q. (2020a). Multi-objective optimization of a solar hybrid CCHP system based on different operation modes. Energy, 206, 118125.

Song, Z., Liu, T., Liu, Y., Jiang, X., & Lin, Q. (2020b). Study on the optimization and sensitivity analysis of CCHP systems for industrial park facilities. International Journal of Electrical Power & Energy Systems, 120, 105984.

Teng, J., Wang, W., & Mu, X. (2020). A novel economic analyzing method for CCHP systems based on energy cascade utilization. Energy, 207, 118227.

Tseng, M.-L., Lin, Y.-H., & Chiu, A. S. F. (2009). Fuzzy AHPbased study of cleaner production implementation in Taiwan PWB manufacturer. Journal of Cleaner Production, 17(14), 1249–1256.

Vaskan, P., Guillén-Gosálbez, G., & Jiménez, L. (2012). Multi-objective design of heat-exchanger networks considering several life cycle impacts using a rigorous MILP-based dimensionality reduction technique. Applied Energy, 98, 149–161.

Vogtländer, J., van der Lugt, P., & Brezet, H. (2010). The sustainability of bamboo products for local and Western European applications. LCAs and land-use. Journal of Cleaner Production, 18(13), 1260–1269.

Vogtlander, J. G., & Arianne, B. (2000). The Virtual Pollution Prevention Costs ‘99’: A single LCA-based indicator for emission. The International Journal of Life Cycle Assessment, 5(2), 113–124.

Vogtländer, J. G., Brezet, H. C., & Hendriks, C. F. (2000). The virtual eco-costs ‘99 A single LCA-based indicator for sustainability and the Eco-Costs – Value Ratio (EVR) model for economic allocation. The International Journal of Life Cycle Assessment, 6, 157–166.

Wang, J., Yang, Y., Mao, T., Sui, J., & Jin, H. (2015). Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system. Applied Energy, 146, 38–52.

Wang, Q., Liu, W., Yuan, X., Tang, H., Tang, Y., Wang, M., Zuo, J., Song, Z., & Sun, J. (2018). Environmental impact analysis and process optimization of batteries based on life cycle assessment. Journal of Cleaner Production, 174, 1262–1273.

Wu, D. W., & Wang, R. Z. (2006). Combined cooling, heating and power: A review. Progress in Energy and Combustion Science, 32(5–6), 459–495.

Yang, Y., Zhang, S., & Xiao, Y. (2015). An MILP (mixed integer linear programming) model for optimal design of districtscale distributed energy resource systems. Energy, 90, 1901– 1915.

Yang, Y., Zhang, S., & Xiao, Y. (2017). Optimal design of distributed energy resource systems based on two-stage stochastic programming. Applied Thermal Engineering, 110, 1358–1370.

Yokoyama, R., & Ito, K. (2006). Optimal design of gas turbine cogeneration plants in consideration of discreteness of equipment capabilities. Journal of Engineering for Gas Turbines and Power, 128(2), 336–343.

Yousefi, H., Ghodusinejad, M. H., & Kasaeian, A. (2017). Multiobjective optimal component sizing of a hybrid ICE + PV/T driven CCHP microgrid. Applied Thermal Engineering, 122, 126–138.

Zhang, Q., Gao, J., Wang, Y., Wang, L., Yu, Z., & Song, D. (2019). Exergy-based analysis combined with LCA for waste heat recovery in coal-fired CHP plants. Energy, 169, 247–262.

Zheng, X., Wu, G., Qiu, Y., Zhan, X., Shah, N., Li, N., & Zhao, Y. (2018). A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China. Applied Energy, 210, 1126–1140.