Share:


Effects of pH, temperature, ionic strength and organic matter on triclocarban solubility

    Georgeta Ramona Ivan Affiliation
    ; Ion Ion Affiliation
    ; Luiza Capra Affiliation
    ; Alina Catrinel Ion Affiliation

Abstract

The solubility of triclocarban in ultrapure water and in several natural aqueous solutions is influenced by several environmental factors. In this study the variation of temperature, pH, ionic strength and concentration of the organic matter over the solubility of triclocarban was analysed. The results show that the solubility of triclocarban increases by increasing the contact time, longer than the time of equilibrium and the temperature. It is less influenced by the variations of pH and strongly influenced by the variation of ionic strength and by the natural organic matter into the studied aqueous matrices.

Keyword : solubility, triclocarban, aqueous solutions, water pollution

How to Cite
Ivan, G. R., Ion, I., Capra, L., & Ion, A. C. (2021). Effects of pH, temperature, ionic strength and organic matter on triclocarban solubility. Journal of Environmental Engineering and Landscape Management, 29(3), 244-250. https://doi.org/10.3846/jeelm.2021.14638
Published in Issue
Jul 2, 2021
Abstract Views
870
PDF Downloads
633
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aris, A. Z., Mohd Hir, Z. A., & Razak, M. R. (2020). Metal-organic frameworks (MOFs) for the adsorptive removal of selected endocrine disrupting compounds (EDCs) from aqueous solution: A review. Applied Materials Today, 21, 100796. https://doi.org/10.1016/j.apmt.2020.100796

Borrirukwisitsak, S., Keenan, H. E., & Gauchotte-Lindsay, C. (2012). Effects of salinity, pH and temperature on the octanol-water partition coefficient of bisphenol A. International Journal of Environmental Science and Development, 3(5), 460–464. https://doi.org/10.7763/IJESD.2012.V3.267

Cantwell, M. G., Wilson, B. A., Zhu, J., Wallace, G. T., King, J. W., Olsen, C. R., Burgess, R. M., & Smith, J. P. (2010). Temporal trends of triclosan contamination in dated sediment cores from four urbanized estuaries: evidence of preservation and accumulation. Chemosphere, 78(4), 347–352. https://doi.org/10.1016/j.chemosphere.2009.11.021

Commission Directive. (1992). Directive 92/69/EEC of 31 July 1992, A.6 Water solubility. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31992L0069

Council Directive. (1976). Council Directive of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products (76/768 / EEC, anexa VI, part 1, no. 23). https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1976L0768:20100301:en:PDF

Delgado, D. R., Holguin, A. R., & Martínez, F. (2012). Solution thermodynamics of Triclosan and Triclocarban in some volatile organic solvents. Vitae, 19, 79–92. https://www.researchgate.net/publication/235577701

Delgado, D. R., Mogollon-Waltero, E. M., Ortiz, C. P., Peña, M. Á., Almanza, O. A., Martínez, F., & Jouyban, A. (2018). Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures. Journal of Molecular Liquids, 271, 522–529. https://doi.org/10.1016/j.molliq.2018.09.026

Diana, M. A., Alejandro, S., & Fleming, M. (2009). Solution thermodynamics of triclocarban in organic solvents of different hydrogen bonding capability. Journal of Solution Chemistry, 38, 1493–1503. https://doi.org/10.1007/s10953-009-9464-6

Ding, S. L., Wang, X. K., Jiang, W. Q., Zhao, R. S., Shen, T. T., Wang, C., & Wang, X. (2015). Influence of pH, inorganic anions and dissolved organic matter on the photolysis of antimicrobial triclocarban in aqueous systems under simulated sunlight irradiation. Environmental Science and Pollution Research, 22, 5204–5211. https://doi.org/10.1007/s11356-014-3686-x

European Commission. (2005). Scientific Committee on Consumer Products SCCP/0851/04, 2005. Opinion on Triclocarban for other uses than as a preservative COLIPA no. P29. https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_016.pdf

Halden, R. U., & Paull, D. H. (2004). Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectrometry. Environmental Science & Technology, 38(18), 4849–4855. https://doi.org/10.1021/es049524f

Halden, R. U., & Paull, D. H. (2005). Co-occurrence of triclocarban and triclosan in U.S. water resources. Environmental Science & Technology, 39(6), 1420–1426. https://doi.org/10.1021/es049071e

Hynther, A., Bromba, C. M., Wulff, J. E., & Helbing, C. C. (2011). Effects of triclocarban, triclosan and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems. Environmental Science & Technology, 45(12), 5395–5402. https://doi.org/10.1021/es1041942

INERIS. (2016). Données technico-économiques sur les substances chimiques en France: Triclocarban (DRC-16-158744-08924A). Portail Substances Chimiques. http://www.ineris.fr/substances/fr/

Ion, I., Ivan, G. R., Senin, R. M., Doncea, S. M., Capra, L., Modrogan, C., Oprea, O., Stinga, G., Orbulet, O., & Ion, A. C. (2019a). Adsorption of triclocarban (TCC) onto fullerene C60 in simulated environmental aqueous conditions. Separation Science and Technology, 54(17), 2759–2772. https://doi.org/10.1080/01496395.2019.1577450

Ion, I., Senin, R. M., Ivan, G. R., Doncea, S. M., Capra, L., Henning, M. P, & Ion, A. C. (2019b). Adsorption of triclocarban on pristine and irradiated MWCNTs in aqueous solutions. Revista de Chimie (Bucharest), 70(8), 2835–2842. https://doi.org/10.37358/RC.19.8.7438

Junhyuk, L., Sunghyun, J., Hwayong, K., Hye, K. C., & Moon, S. S. (2013). Solubility of triclocarban in pure alkanols at different temperatures. Korean Journal of Chemical Engineering, 30(1), 181–186. https://doi.org/10.1007/s11814-012-0099-8

Kennedy, R. C., Fling, R. R., Terry, P. D., Menn, F. M., Chen, J., & Borman, C. J. (2015). Extraction of 3,4,4′-Trichlorocarbanilide from rat fecal samples for determination by high pressure liquid chromatography-tandem mass spectrometry. International Journal of Environmental Research and Public Health, 12(7), 8125–8132. https://doi.org/10.3390/ijerph120708125

Lehutso, R. F., Daso, A. P., & Okonkwo, J. O. (2017). Occurrence and environmental levels of triclosan and triclocarban in selected wastewater treatment plants in Gauteng Province, South Africa. Emerging Contaminants, 3(3), 107–114. https://doi.org/10.1016/j.emcon.2017.07.001

Loftin, K. A., Adams, C. D., Meyer, M. T., & Surampalli, R. (2008). Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. Journal of Environmental Quality, 37(2), 378–386. https://doi.org/10.2134/jeq2007.0230

Lv, M., Sun, Q., Xu, H., Lin, L., Chen, M., & Yu, C. P. (2014). Occurrence and fate of triclosan and triclocarban in a subtropical river and its estuary. Marine Pollution Bulletin, 88(1–2), 383–388. https://doi.org/10.1016/j.marpolbul.2014.07.065

Miller, T. R., Heidler, J., Chillrud, S. N., DeLaquil, A., Ritchie, J. C., Mihalic, J. N., Bopp, R., & Halden, R. U. (2008). Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments. Environmental Science & Technology, 42(12), 4570–4576. https://doi.org/10.1021/es702882g

Mora, C. P., & Martínez, F. (2007). Thermodynamic study of partitioning and solvation of (+)-naproxen in some organic solvent/buffer and liposome systems. Journal of Chemical & Engineering Data, 52(5), 1933–1940. https://doi.org/10.1021/je700241c

Roman, D., Barnett, E., & Balske, R. (1957). Cutaneous antiseptic activity of 3, 4, 4′-trichlorocarbanilide. Proceedings of the Scientific Section of the Toilet Goods Association, 28, 12–13.

Sangster, J. (1997). Octanol-water partition coefficients: Fundamentals and physical chemistry (1 ed.). John Wiley & Sons. https://www.wiley.com/en-us/Octanol+Water+Partition+Coefficients%3A+Fundamentals+and+Physical+Chemistry-p-9780471973973

Sapkota, A., Heidler, J., & Halden, R. (2007). Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry. Environmental Research, 103(1), 21–29. https://doi.org/10.1016/j.envres.2006.03.006

Schebb, N. H., Inceoglu, B., Ahn, K. C., Morisseau, C., Gee, S. J., & Hammock, B. D. (2011). Investigation of human exposure to triclocarban after showering and preliminary evaluation of its biological effects. Environmental Science & Technology, 45(7), 3109–3115. https://doi.org/10.1021/es103650m

Snyder, E. H., & O’Connor, G. A. (2013). Risk assessment of land-applied biosolids-borne triclocarban (TCC). Science of The Total Environment, 442, 437–444. https://doi.org/10.1016/j.scitotenv.2012.10.007

Snyder, E. H., O’Connor, G. A., & McAvoy, D. C. (2010). Measured physico-chemical characteristics and biosolids-borne concentrations of the antimicrobial Triclocarban (TCC). Science of the Total Environment, 408(13), 2667–2673. https://doi.org/10.1016/j.scitotenv.2010.03.001

TCC Consortium. (2002). High production volume (HPV) chemical challenge program data availability and screening level assessment for triclocarban, CAS#: 101-20-2. 201-14186A. Prepared for the HPV Challenge Program by: The TCC Consortium December 27, 2002. https://www.aciscience.org/docs/Triclocarban_HPV_Test_Plan.pdf

Venkatesan, A. K., Pycke, B. F., Barber, L. B., Lee, K. E., & Halden, R. U. (2012). Occurrence of triclosan, triclocarban, and its lesser chlorinated congeners in Minnesota freshwater sediments collected near wastewater treatment plants. Journal of Hazardous Materials, 229–230, 29–35. https://doi.org/10.1016/j.jhazmat.2012.05.049

Vimalkumar, K., Arun, E., Krishna-Kumar, S., Poopal, R. K., Nikhil, N. P., Subramanian, A., & Babu-Rajendran, R. (2018). Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers. Science of the Total Environment, 625, 1351–1360. https://doi.org/10.1016/j.scitotenv.2018.01.042

Vimalkumar, K., Seethappan, S., & Pugazhendhi, A. (2019). Fate of Triclocarban (TCC) in aquatic and terrestrial systems and human exposure. Chemosphere, 230, 201–209. https://doi.org/10.1016/j.chemosphere.2019.04.145

Wanga, D., Taoa, L., Yanga, J., Xuc, Z., Yanga, Q., Zhanga, Y., Liua, X., Liua, Q., & Huang, J. (2020). Understanding the interaction between triclocarban and denitrifiers. Journal of Hazardous Materials, 401, 123343. https://doi.org/10.1016/j.jhazmat.2020.123343

Ying, G., Yu, X., & Kookana, R. (2007). Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modeling. Environmental Pollution, 150(3), 300–305. https://doi.org/10.1016/j.envpol.2007.02.013

Zhao, J. L., Ying, G. G., Liu, Y. S., Chen, F., Yang, J. F., & Wang, L. (2013). Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: From source to the receiving environment. Journal of Hazardous Materials, 179(1– 3), 215–222. https://doi.org/10.1016/j.jhazmat.2010.02.082