Share:


Study on measurement model of lignin content in pulp after alkaline extraction

    Zhichao Ma Affiliation
    ; Shaoxu Chen Affiliation
    ; Yongjun Yin Affiliation
    ; Yanying Zhou Affiliation
    ; Xiaodan Lu Affiliation
    ; Tingting Lin Affiliation

Abstract

Because kappa number cannot accurately represent the lignin content in the pulp after alkaline extraction, lead to the excessive dosage of bleaching chemicals added and the pollutant content increases. In order to accurately determine the dosage of bleaching agent, reduce pollutant emissions, a prediction model of lignin content of pulp was established by analyzing the correlation between lignin content and alkaline extraction conditions in this paper. The results show that the established soft sensor model can accurately measure lignin content, it is helpful to determine the amount of bleaching agent more accurately, reduce pollutant generation after pulp bleaching.

Keyword : adsorbable organic halogen (AOX), prediction model, lignin content, alkaline extraction

How to Cite
Ma, Z., Chen, S., Yin, Y., Zhou, Y., Lu, X., & Lin, T. (2021). Study on measurement model of lignin content in pulp after alkaline extraction. Journal of Environmental Engineering and Landscape Management, 29(2), 94-100. https://doi.org/10.3846/jeelm.2021.14182
Published in Issue
May 13, 2021
Abstract Views
407
PDF Downloads
314
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bajpai, P. (2012). ECF and TCF bleaching. In Environmentally benign approaches for pulp bleaching (2nd ed., pp. 263–286). https://doi.org/10.1016/B978-0-444-59421-1.00011-9

Cui, Y., Puthson, P., Chen, C.-L., Gratzl, J. S., & Kirkman, A. G. (2000). Kinetic study on delignification of kraft-AQ pine pulp with hydrogen peroxide catalyzed by Mn(IV)-Me4DTNE. Holzforschung, 54(4). https://doi.org/10.1515/HF.2000.069

Dai, Y., Song, X. P., Gao, C., He, S., Nie, S. X., & Qin, C. R. (2016). Xylanase-aided chlorine dioxide bleaching of bagasse pulp to reduce AOX formation. Bioresources, 11(2), 3204– 3214. https://doi.org/10.15376/biores.11.2.3204-3214

Eriksson, G., & Grén, U. (1997). Pulp washing: Influence of temperature on lignin leaching from kraft pulps. Nordic Pulp & Paper Research Journal, 12(4), 244–251. https://doi.org/10.3183/npprj-1997-12-04-p244-251

Frisk, T., & Bilaletdin, A. (1994). Kinetic models for describing degradation of AOX in the waste water of a mill producing bleached sulphate pulp. Water Science and Technology, 29(5– 6), 137–147. https://doi.org/10.2166/wst.1994.0709

Government of Canada. (1999). Pulp and paper mill effluent chlorinated dioxins and furans regulations (SOR/92-267). Canadian Environmental Protection Act, 1999. https://laws-lois.justice.gc.ca/eng/regulations/sor-92-267/page-1.html#h-942243

Hosoya, T., Henniges, U., Potthast, A., & Rosenau, T. (2015). Effects of inorganic salts on the degradation of 2,5-dihydroxy[1,4]-benzoquinone as a key chromophore in pulps by hydrogen peroxide under basic conditions. Holzforschung, 69(6), 685–693. https://doi.org/10.1515/hf-2014-0256

Isoaho, J. P., Tarkkanen, S., Alen, R., & Fiskari, J. (2012). Oxidative degradation of AOX in softwood-based kraft mill effluents from ECF bleaching. Nordic Pulp & Paper Research Journal, 27(4), 707–713. https://doi.org/10.3183/npprj-2012-27-04-p707-713

Kaur, D., Bhardwaj, N. K., & Lohchab, R. K. (2018). A study on pulping of rice straw and impact of incorporation of chlorine dioxide during bleaching on pulp properties and effluents characteristics. Journal of Cleaner Production, 170, 174–182. https://doi.org/10.1016/j.jclepro.2017.09.111

Lehtimaa, T., Tarvo, V., Kuitunen, S., Jaaskelainen, A. S., & Vuorinen, T. (2010a). The effect of process variables in chlorine dioxide prebleaching of birch kraft pulp. Part 1. Inorganic chlorine compounds, Kappa number, lignin, and hexenuronic acid content. Journal of Wood Chemistry and Technology, 30(1), 1–18. https://doi.org/10.1080/02773810903276676

Lehtimaa, T., Tarvo, V., Kuitunen, S., Jaaskelainen, A. S., & Vuorinen, T. (2010b). The effect of process variables in chlorine dioxide prebleaching of birch kraft pulp. Part 2. AOX and OX formation. Journal of Wood Chemistry and Technology, 30(1), 19–30. https://doi.org/10.1080/02773810903276684

Li, J. B., & Gellerstedt, G. (1997). The contribution to kappa number from hexeneuronic acid groups in pulp xylan. Carbohydrate Research, 302(3–4), 213–218. https://doi.org/10.1016/S0008-6215(97)00125-0

Li, P. Y., Zhang, M. Y., Xia, X. X., & Lin, C. T. (2012). Reinforcement of hydrogen peroxide bleaching of bamboo pulp. Advanced Materials Research, 476–478, 2071–2074. https://doi.org/10.4028/www.scientific.net/AMR.476478.2071

Moldenius, S., & Sjögren, B. (1982). Kinetic models for hydrogen peroxide bleaching of mechanical pulps. Journal of Wood Chemistry and Technology, 2(4), 447–471. https://doi.org/10.1080/02773818208085145

Ma, Z., Zhong, P., Li, J., & Yin, Y. (2020). Soft Sensor Model of adsorbable organic halogen based on bleached pulp quality indices. Bioresources, 15(1), 62–77. https://doi.org/10.15376/biores.15.1

Olsson, B. (2002). Optimization and control of hydrogen peroxide bleaching. Japan Tappi Journal, 56(6), 781–786, 022. https://doi.org/10.2524/jtappij.56.781

Pang, Z. Q., Wang, X. Q., & Chen, J. C. (2011). Gradient intensified alkali extraction of kraft pulp by oxygen-containing bleaching agents. Advanced Materials Research, 236–238, 1293–1296. https://doi.org/10.4028/www.scientific.net/AMR.236-238.1293

Standardization Administration of China. (2008). Discharge standards for water pollutants in pulping and paper industry (GB/T 3544). Beijng, China.

Sharma, A., Thakur, W., Shrivastava, A., Jain, R. K., Mathur, R. M., Gupta, R., & Kuhad, R. C. (2014). Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: A pilot-scale study. Bioresource Technology, 169, 96–102. https://doi.org/10.1016/j.biortech.2014.06.066

Sow, I., Dixon, R. K., Pan, J., Sookdeo, A., Swain, E., & Granier, L. (2014). Financing for innovative technologies and best practices to reduce persistent organic pollutants. Mitigation and Adaptation Strategies for Global Change, 19(1), 93–106. https://doi.org/10.1007/s11027-012-9428-9

Shi, L. S., Ge, J. Y. S., Nie, X., Qin, C. R., & Yao, S. Q. (2019). Effect of lignin structure on adsorbable organic halogens formation in chlorine dioxide bleaching. Royal Society Open Science 6(2), 182024. https://doi.org/10.1098/rsos.182024

Sun, X., Hou, Q., Shi, H., & Zhou, L. (2018). Kinetic study on iso-concentration hydrogen peroxide bleaching of poplar chemi-thermomechanical pulp by the process of continuous chemical supplement. BioResources, 13(3), 5408–5415.

TAPPI. (2002). Acid-insoluble lignin in wood and pulp (T222 om-02). TAPPI Press, Atlanta. https://research.cnr.ncsu.edu/wpsanalytical/documents/T222.PDF

US EPA. (2018). Effluent guidelines-pulp and paper rulemaking actions-final pulp and paper cluster rule. Effluent Guidelines. https://www.epa.gov/eg/pulp-paper-and-paperboard-effluent-guidelines

Xu, Z. J., Liu, Y., & Wang, Z. (2014). A survey of hydrogen peroxide bleaching and FAS bleaching of liquid package recycled pulp. Advanced Materials Research, 1081, 48–52. https://doi.org/10.4028/www.scientific.net/AMR.1081.48

Yin., Y., Song, X., Li, C., & Nie, S. (2018). A method for integrated optimization of chlorine dioxide delignification of bagasse pulp. Bioresources, 13(1), 1065–1074. https://doi.org/10.15376/biores.13.1.1065-1074

Zhang, M. Y., Xu, Y., & Li, K. (2007). Removal of residual lignin of ethanol-based organosolv pulp by an alkali extraction process. Journal of Applied Polymer Science, 106(1), 630–636. https://doi.org/10.1002/app.26622

Zhu, H. X., Yao, S. Q., Jiang, L., Wang, S. F., & Qin, C. R. (2016). Kinetics of adsorbable organic halogen formation during the first chlorine dioxide bleaching stage of eucalyptus kraft pulp. BioResources, 11(4), 8820–8830. https://doi.org/10.15376/biores.11.4.8820-8830

Zhu, H. X., Yao, S. Q., Chen, Y. M., Li, X. Y., & Qin, C. R. (2017). Research progress of AOX reduction technology for ECF bleaching. Transactions of China Pulp & Paper, 32(2), 52–57.

Zwirchmayr, N. S., Hosoya, T., Henniges, U., Gille, L., Bacher, M., & Furtmüller, P., & Rosenau, T. (2017). Degradation of the cellulosic key chromophore 5,8-dihydroxy-[1,4]-naphthoquinone by hydrogen peroxide under alkaline conditions. Journal of Organic Chemistry, 82(21), 11558–11565. https://doi.org/10.1021/acs.joc.7b01827

Zhang, H. C., Nie, S. X., Qin, C. R., & Wang, S. F. (2018a). Removal of hexenuronic acid to reduce AOX formation in hot chlorine dioxide bleaching of bagasse pulp. Industrial Crops and Products, 128, 338–345. https://doi.org/10.1016/j.indcrop.2018.11.025

Zhang, H., Nie, S., Qin, C., Zhang, K., & Wang, S. (2018b). Effect of hot chlorine dioxide delignification on AOX in bagasse pulp wastewater. Cellulose, 25(3), 2037–2049. https://doi.org/10.1007/s10570-018-1670-1