Development of an automated surface crack detection and BIM-integrated management system for concrete bridges

    Hsiao-Yung Hsieh Info
    Kuang-Yen Liu Info
    SzuMin Kang Info
DOI: https://doi.org/10.3846/jcem.2025.24094

Abstract

Bridge inspection work typically requires inspectors to capture hundreds to thousands of images, consuming substantial time for review. This research developed an “Automated Crack Image Cloud Detection System” and the “Auto Predictor” application, enabling automatic crack identification and deterioration image recognition through uploads. This platform integrates with the “Bridge BIM Cloud Management System”, connecting crack information with three-dimensional models. Engineers can create BIM models based on structural design drawings, while inspectors can photograph cracks and integrate relevant information. The study utilized deterioration images from long-term bridge inspections in Taiwan, covering various real-world environmental conditions. Through effective deterioration labeling strategies and comparing YOLOv4 and YOLOv7 algorithms with recommended parameters, an optimal model was obtained for system implementation. Research results demonstrate that the “Automated Crack Image Cloud Detection System” successfully identified cracks in bridge inspections and short beam shear test specimens. The deep integration with the “Bridge BIM Cloud Management System” enables automatic component crack identification and generates location charts, providing decision-makers with intuitive visual data. The YOLOv7-based model achieved a mean Average Precision (mAP) of 87.64%, significantly improving bridge inspection efficiency and demonstrating exceptional application potential.

Keywords:

bridge inspection, Deep Learning, Artificial Intelligence, crack detection, automation, BIM, management

How to Cite

Hsieh, H.-Y., Liu, K.-Y., & Kang, S. (2025). Development of an automated surface crack detection and BIM-integrated management system for concrete bridges. Journal of Civil Engineering and Management, 31(7), 710–728. https://doi.org/10.3846/jcem.2025.24094

Share

Published in Issue
September 4, 2025
Abstract Views
9

References

ASCII Table. (2022). ASCII table mapping. https://www.asciitable.com

Azhar, S., Brown, J., & Farooq, B. (2012). Building Information Modeling (BIM): A new paradigm for the design and management of construction projects. Journal of Construction Engineering and Management, 138(5), 575–585. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000527

Berners-Lee, T., Fielding, R., & Frystyk, H. (1996). Hypertext transfer protocol--HTTP/1.0 (RFC 1945). https://doi.org/10.17487/rfc1945

Beskopylny, A. N., Shcherban’, E. M., Stel’makh, S. A., Mailyan, L. R., Meskhi, B., Razveeva, I., Kozhakin, A., El’shaeva, D., Beskopylny, N., & Onore, G. (2023). Detecting cracks in aerated concrete samples using a convolutional neural network. Applied Sciences, 13(3), Article 1904. https://doi.org/10.3390/app13031904

Bevc, L., Mahut, B., & Grefstad, K. (1999). Review of current practice for assessment of structural condition and classification of defects (Technical Report). BRIME Project (Bridge Management in Europe), Deliverable D2.

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv. https://doi.org/10.48550/arXiv.2004.10934

Byun, N., Han, W. S., Kwon, Y. W., & Kang, Y. J. (2021). Development of BIM-based bridge maintenance system considering maintenance data schema and information system. Sustainability, 13(9), Article 4858. https://doi.org/10.3390/su13094858

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers. In A. Vedaldi, H. Bischof, T. Brox, & J. M. Frahm (Eds.), Lecture notes in computer science. Vol. 12346: Computer vision – ECCV 2020 (pp. 213–229). https://doi.org/10.1007/978-3-030-58452-8_13

Chan, B. (2019). Current status and prospects of image recognition and deep learning in intelligent transportation systems. Chinese Technology, 123, 342–353.

Chang, C. Y., Chen, L. C., & Ma, C. C. (2017). Three-dimensional measurement of dynamic full-field displacement by stereo DIC using one high-speed camera. In 15th Asia Pacific Conference for Non-Destructive Testing (APCNDT2017). Singapore.

Dang, J., Chun, P. J., Mizumoto, T., Liu, J., & Fujishima, T. (2021). Multi-type bridge damage detection method based on YOLO. Intelligence, Informatics and Infrastructure, 2, 447–456. https://doi.org/10.11532/jsceiii.2.J2_447

Davila Delgado, J. M., Butler, L. J., Gibbons, N., Brilakis, I., Elshafie, M. Z. E. B., & Middleton, C. (2017). Management of structural monitoring data of bridges using BIM. Bridge Engineering, 170(3), 204–218. https://doi.org/10.1680/jbren.16.00013

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. In The Ninth International Conference on Learning Representations.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T. (1999). Hypertext Transfer Protocol--HTTP/1.1 (RFC 2616). https://doi.org/10.17487/rfc2616

Google. (2021). A colaboratory editing environment allows you to combine executable code [Web-based notebook]. https://colab.research.google.com/notebooks/intro.ipynb

Guo, C., Lv, X., Zhang, Y., & Zhang, M. (2021). Improved YOLOv4-tiny network for real-time electronic component detection. Scientific Reports, 11(1), Article 22744. https://doi.org/10.1038/s41598-021-02225-y

Hsieh, C. Y. (2018). Integration of image processing, computer vision, and artificial intelligence to identify concrete surface cracks [Master’s thesis]. Department of Civil Engineering, National Taiwan University.

Hsu, S. H., Chang, T. W., & Chang, C. M. (2021). Concrete surface crack segmentation based on deep learning. In P. Rizzo, & A. Milazzo (Eds.). Lecture notes in civil engineering. Vol 128: European workshop on structural health monitoring (EWSHM 2020) (pp. 24–34). Springer, Cham. https://doi.org/10.1007/978-3-030-64908-1_3

Jailia, M., Kumar, A., Agarwal, M., & Sinha, I. (2016). Behavior of MVC (Model View Controller) based web application developed in PHP and .NET framework. In 2016 International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India. IEEE. https://doi.org/10.1109/ICTBIG.2016.7892651

Kassem, M., & Succar, B. (2015). A conceptual framework for BIM-enabled asset management. Journal of Facilities Management, 13(2), 162–179.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., & Shah, M. (2022). Transformers in vision: A survey. ACM Computing Surveys, 54(10), 1–41. https://doi.org/10.1145/3505244

Kivimäki, T., & Heikkilä, R. (2010). Bridge information modelling (BrIM) and model utilization at worksites in Finland. In Proceedings of the 27th International Symposium on Automation and Robotics in Construction (ISARC) (pp. 505–513), Bratislava, Slovakia. https://doi.org/10.22260/ISARC2010/0054

Krishnamurthy, B., Mogul, J. C., & Kristol, D. M. (1999). Key differences between HTTP/1.0 and HTTP/1.1. Computer Networks, 31(11–16), 1737–1751. https://doi.org/10.1016/S1389-1286(99)00008-0

Kruachottikul, P., Cooharojananone, N., Phanomchoeng, G., Muangsiri, W., & Silapachote, P. (2021). Deep learning-based visual defect-inspection system for reinforced concrete bridge substructure: A case of Thailand’s department of highways. Journal of Civil Structural Health Monitoring, 11, 949–965. https://doi.org/10.1007/s13349-021-00490-z

Laravel. (2022). The PHP framework for web artisans. https://laravel.com/

Lauridsen, J., & Lassen, B. (1999). The Danish bridge management system DANBRO. In P. C. Das (Ed.), Management of highway structures (pp. 5–10). Thomas Telford.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Journal of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791

Li, H., & Zhang, Y. (2022). Enhanced bridge maintenance management using BIM technology. Journal of Infrastructure Systems, 28(1), Article 04022001. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000575

Li, R., Yu, J., Li, F., Yang, R., Wang, Y., & Peng, Z. (2023). Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN. Construction and Building Materials, 362, Article 129659. https://doi.org/10.1016/j.conbuildmat.2022.129659

Lin, P. T., Yao, Y. T., Chen, Y. H., Lin, S. S., Chang, C. Y., Liu, K. Y., Lin, Y. H., & Lu, L. H. (2019). Stereovision-based automatic crack detection for 3D bridge inspection. In 2nd World Congress on Condition Monitoring (WCCM). Singapore.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada. https://doi.org/10.1109/ICCV48922.2021.00986

Lu, W. H., Lin, S. P., Lin, P. T., & Wu, Y. W. (2018). Development and applications of artificial intelligence image recognition system. In Proceedings of the 19th Conference on Nondestructive Testing Technology (CNDT). Taiwan.

Maqsood, T., & Memon, A. (2021). Integration of UAVs and BIM for bridge inspection and maintenance. Automation in Construction, 122, Article 103461. https://doi.org/10.1016/j.autcon.2020.103461

Miyamoto, A., & Motoshita, M. (2015). Development and practical application of a bridge management system (J-BMS) in Japan. Civil Engineering Infrastructures Journal, 48(1), 189–216.

Opara, J. N., Thein, A. B. B., Izumi, S., Yasuhara, H., & Chun, P. J. (2021). Defect detection on asphalt pavement by deep learning. International Journal of GEOMATE, 21(83), 87–94. https://doi.org/10.21660/2021.83.6153

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Python Software Foundation. (2023). Documentation for Python’s standard library, along with tutorials and guides. https://www.python.org/

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 779–788), Las Vegas, NV, USA. IEEE. https://doi.org/10.1109/CVPR.2016.91

Rezaie, A., Achanta, R., Godio, M., & Beyer, K. (2020). Comparison of crack segmentation using digital image correlation measurements and deep learning. Construction and Building Materials, 261, Article 120474. https://doi.org/10.1016/j.conbuildmat.2020.120474

Song, Y. C., Chen, C. C., Lai, M. C., Hsu, C. C., Hung, H. H., & Liu, K. Y. (2014). Development of bridge lifecycle disaster prevention management system (Report No. NCREE-2014-027). National Center for Research on Earthquake Engineering.

Su, C. W., Zhang, S. Y., Yang, Y. W., Huang, C. H., Jiang, M. Y., Yao, N. J., Huang, R. Y., Yang, Z. B., Tsai, M. G., Yeh, C. C., Hsu, W. K., Jen, Y. Y., Liao, H. G., Chuang, Y. H., & Liao, A. Z. (2018). Planning for the establishment of the second-generation bridge management information system in Taiwan (Part three). Institute of Transportation, Ministry of Transportation and Communications.

Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2022). Efficient transformers: A survey. ACM Computing Surveys, 55(6), Article 109. https://doi.org/10.1145/3530811

Thompson, P. D., Small, E. P., Johnson, M., & Marshall, A. R. (1998). The Pontis bridge management system. Structural Engineering International, 8(4), 303–308. https://doi.org/10.2749/101686698780488758

Tong, Z., Gao, J., & Zhang, H. (2018). Innovative method for recognizing subgrade defects based on a convolutional neural network. Construction and Building Materials, 169, 69–82. https://doi.org/10.1016/j.conbuildmat.2018.02.081

Tzutalin. (2021). labelImg [Computer software]. GitHub. https://github.com/tzutalin/labelImg

Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 7464–7475), Vancouver, BC, Canada. IEEE. https://doi.org/10.1109/CVPR52729.2023.00721

WongKinYiu. (2023). Open source YOLOv7 [Code repository]. GitHub. https://github.com/WongKinYiu/yolov7

World Wide Web Consortium. (2022). Hypertext Transfer Protocol – HTTP/1.1. (Technical standard). https://www.w3.org/Protocols/rfc2616/rfc2616.html

Zhang, Q., Barri, K., Babanajad, S. K., & Alavi, A. H. (2021). Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain. Engineering, 7(12), 1786–1796. https://doi.org/10.1016/j.eng.2020.07.026

Zhang, Y., Zuo, Z., Xu, X., Wu, J., Zhu, J., Zhang, H., Wang, J., & Tian, Y. (2022). Road damage detection using UAV images based on multi-level attention mechanism. Automation in Construction, 144, Article 104613. https://doi.org/10.1016/j.autcon.2022.104613

Zhu, M. (2004). Recall, precision and average precision. Department of Statistics and Actuarial Science, University of Waterloo.

View article in other formats

CrossMark check

CrossMark logo

Published

2025-09-04

Issue

Section

Articles

How to Cite

Hsieh, H.-Y., Liu, K.-Y., & Kang, S. (2025). Development of an automated surface crack detection and BIM-integrated management system for concrete bridges. Journal of Civil Engineering and Management, 31(7), 710–728. https://doi.org/10.3846/jcem.2025.24094

Share