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1. Introduction
According to current statistics from the Ministry of Trans-
portation and Communications, there are nearly 27,000 
bridges in Taiwan (Su et  al., 2018). Among these, more 
than 22,000 bridges are managed and maintained by lo-
cal governments, while the rest are managed by various 
agencies, including the Directorate General of Highways 
and the National Expressway Engineering Bureau. As the 
ages of these bridges increase, the workforce demands for 
maintenance will increase. The current maintenance agen-
cies primarily rely on the “Highway Bridge Inspection and 
Reinforcement Standards” issued by the Ministry of Trans-
portation and Communications, training materials, and re-
lated data (Song et  al., 2014) to conduct safety inspec-
tions for highway bridges. Bridge inspections can be di-
vided into three categories: routine inspections, special in-
spections, and detailed inspections. In general, each bridge 
must be inspected at least once every two years, requir-
ing substantial personnel from both the government and 

private engineering consulting companies. Bridge inspec-
tions are based on visual inspections, and the assessment 
is often subjective, leading to inconsistencies in evalua-
tion standards.

To enhance the efficiency and accuracy of bridge in-
spections, this study aims to develop an “Automated 
Crack Image Cloud Detection System” to improve existing 
bridge inspection methods and reduce the likelihood of 
oversight. This cloud platform will integrate a “Bridge BIM 
Cloud Management System”, allowing engineers to create 
BIM bridge models based on structural design drawings 
and incorporate inspection data into these models. This 
integration facilitates the continuous application of bridge 
inspections in the future, providing more comprehensive 
management and maintenance.

Regarding the dataset used for training the models, 
this study utilized degradation images captured during 
long-term bridge inspection work in Taiwan and combined 
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YOLOv4 and YOLOv7 for model training to achieve crack 
recognition. In comparison to other studies, such as that 
of Li et al. (2023), which employed Faster R-CNN for bridge 
crack detection, although they achieved commendable re-
sults, their computational efficiency was lower, and their 
capacity to process large-scale datasets was limited. Fur-
thermore, Kruachottikul et al. (2021) explored deep learn-
ing-based image processing techniques, which improved 
accuracy but still lacked adaptability to varying environ-
mental conditions. The contribution of this study lies in 
training the model specifically for the Taiwanese environ-
ment, enabling YOLOv4 and YOLOv7 to achieve a mean 
Average Precision (mAP) of 87.64% in crack detection, 
significantly enhancing both detection accuracy and effi-
ciency. This achievement not only provides a more reliable 
technical foundation for bridge inspections but also serves 
as a reference for future related research on model selec-
tion and training methodologies. Moreover, Davila Delga-
do et al. (2017) studied the integration of BIM and Appli-
cation Programming Interfaces (APIs), proposing an API-
based bridge monitoring system capable of real-time data 
collection and analysis, along with providing visual reports. 
However, this system primarily focuses on data collection 
and management, lacking sufficient integration with auto-
mated image recognition. In contrast, this study not only 
integrates BIM and APIs but also incorporates automated 
crack detection technology within the system, establishing 
a comprehensive monitoring and maintenance framework. 
This contribution enhances the efficiency and accuracy of 
bridge maintenance and provides a viable implementation 
template for future research. Future continuation plans will 
include ongoing research on degradation scoring mecha-
nisms to further refine the automation of the bridge in-
spection system.

2. Background and research methodology
In the United States, bridge inspections are predominant-
ly performed based on the PONTIS system developed by 
the Federal Highway Administration and the BRIDGIT sys-
tem (Thompson et al., 1998). In Europe, various countries 
have different bridge management systems. These include 
the DANBRO system currently used in Denmark (Lauridsen 
& Lassen, 1999), BridgeMan used in the United Kingdom 
(Bevc et al., 1999), Edouard employed in France, and the 
National Road Administration Management System ap-
plied in Finland (Kivimäki & Heikkilä, 2010). In Asia, the 
SHBMS system is utilized in South Korea, J-BMS is em-
ployed in Japan (Miyamoto & Motoshita, 2015), and the 
CBMS3000 system is used in China. In Taiwan, the govern-
ment initiated the development of the Taiwan Area Bridge 
Management Information System in November 1999. The 
system, abbreviated as TBMS, was completed by the end 
of 2000 and developed further in 2013.

In recent years, with the widespread application of 
Building Information Modeling (BIM) management sys-
tems, an increasing number of bridge management sys-

tems have begun to integrate BIM technology to enhance 
inspection efficiency and maintenance accuracy. Research 
indicates that BIM technology not only effectively inte-
grates deterioration images captured during bridge in-
spections with relevant data but also facilitates data que-
rying and application for future engineering management 
units. Furthermore, a study by Byun et al. (2021) proposed 
a  BIM-based bridge maintenance system that considers 
maintenance data architecture and information systems, 
demonstrating the potential application value of BIM in 
bridge maintenance. The application of BIM in the design 
and maintenance processes of bridges provides more in-
tuitive visualization tools to assist engineers in decision-
making (Azhar et al., 2012), and through data analysis and 
simulation, it enhances the overall performance of bridges 
(Kassem & Succar, 2015). Additionally, research combin-
ing BIM with traditional inspection methods has shown 
that this integrated approach can significantly improve in-
spection accuracy and efficiency while reducing labor and 
time costs. Moreover, it has been noted that BIM tech-
nology can enhance the efficiency of bridge inspections 
and improve the accuracy of maintenance management 
through data integration (Li & Zhang, 2022). Furthermore, 
BIM effectively integrates various inspection technologies, 
including drone and sensor data, further enhancing the 
comprehensiveness and precision of inspections (Maq-
sood & Memon, 2021).

In addition, image recognition can be achieved 
through deep learning techniques (Lu et al., 2018; Chan, 
2019). One critical deep learning model is the convolu-
tional neural network (CNN). In 1998, Yann LeCun applied 
CNNs to classify handwritten digits, leading to the devel-
opment of the LeNet5 model (LeCun et al., 1998). This laid 
the foundation for subsequent advancements in CNNs. In 
2020  and 2022, YOLOv4 (Bochkovskiy et  al., 2020) and 
YOLOv7 (Wang et al., 2023) were introduced respective-
ly, which can simultaneously detect multiple objects and 
their positions, thereby achieving real-time detection with 
high accuracy. Compared to YOLOv4, YOLOv7 has demon-
strated improvements in both speed and accuracy, partic-
ularly excelling in the detection of small objects. YOLOv7 
employs an enhanced algorithmic architecture that incor-
porates deeper network layers and more effective feature 
extraction techniques, allowing it to capture details more 
effectively when processing complex scenes. Additional-
ly, YOLOv7 introduces multi-scale feature fusion technol-
ogy, which is particularly crucial for the detection of small 
objects, as it enables simultaneous detection at different 
resolutions, significantly improving the recognition rate of 
small objects. In the selection of deep learning techniques, 
this study adopts the YOLO series models primarily due to 
their advantages in real-time detection and computation-
al efficiency. Compared to the widely used Transformer-
based architectures in object detection, such as DEtection 
TRansformer (DETR) (Carion et al., 2020) and Swin Trans-
former (Liu et  al., 2021), the YOLO series demonstrates 
higher computational efficiency and practicality when pro-
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cessing large-scale bridge inspection images. While Trans-
former architectures offer advantages in global feature ex-
traction (Khan et al., 2022), their higher computational cost 
and model complexity may limit their performance in re-
al-time applications (Tay et al., 2022). Furthermore, com-
pared to the recently proposed CNN-Transformer hybrid 
architectures, the YOLO series models maintain excellent 
detection accuracy and speed under limited computational 
resources. The improved architecture of YOLOv7, particu-
larly its capabilities in multi-scale feature fusion and small 
object detection, provides higher accuracy and stability for 
bridge crack detection. The choice of YOLOv7 in this study 
is not only based on its superior performance but also 
its deployment convenience and low computational cost, 
which are critical for establishing practical bridge inspec-
tion systems (Dosovitskiy et  al., 2021). In civil engineer-
ing, some researchers have employed deep learning tech-
niques such as DeepLabv3+ and Mask R-CNN, applying 
the outcomes of these models in structural health mon-
itoring in the field of structural engineering (Hsu et  al., 
2021; Hsieh, 2018). This study selects the YOLO series al-
gorithms primarily due to their superior performance in 
real-time detection, along with their commendable accu-
racy and speed, making them particularly suitable for civil 
engineering applications that require rapid response.

With the advancement of deep learning technology, an 
increasing number of researchers are using this technol-
ogy to detect and classify cracks on roads and buildings 
(Opara et al., 2021; Zhang et al., 2022; Tong et al., 2018; 
Rezaie et  al., 2020). Zhang et  al. (2021) utilized one-di-
mensional convolutional neural networks (1D-CNNs) and 
recurrent neural networks (RNNs) such as long short-term 
memory (LSTM) networks in the frequency domain to train 
image recognition models using images of cracks in con-
crete bridges. They achieved high accuracy due to the lim-
ited number of convolutional layers in the model, resulting 
in shorter training times. However, one drawback of their 
model is that it recognizes fewer and simpler features than 
other models, making it more suitable for detecting de-
fects in metal materials. Japanese scholars used YOLOv3, 
trained with 900 images of cracks, to detect bridge deteri-
oration (Dang et al., 2021). Crack recognition models using 
YOLOv4 were also applied to study aerated concrete sam-
ples (Beskopylny et al., 2023). Researchers have employed 
various image processing techniques, such as capturing 
images under different acquisition conditions, rotation an-
gles, object deformations, and lighting conditions. This ap-
proach expanded the dataset of deteriorated images, ul-
timately resulting in an accuracy rate of AP@50 = 85%.

In the field of networking technology, HTTP serves 
as the foundation for contemporary internet applications 
(World Wide Web Consortium, 2022; Berners-Lee et  al., 
1996; Fielding et  al., 1999; Krishnamurthy et  al., 1999). 
Communication interfaces employing this protocol are 
utilized in a wide range of applications, including mobile 
apps and embedded devices. These interfaces consist of 
two endpoints: the client and the server. The client is typi-
cally the user, who inputs a specific IP address to access 

the server. The status code is used to rapidly determine 
the success or failure of message transmission between 
the two endpoints, aiding in the quick resolution of any 
issues. Clients use HTTP methods such as GET to query 
server resources and POST to add resources. By combining 
HTTP methods with web application design principles (Jail-
ia et al., 2016), the cloud platforms have been established.

In this study, the HTTP communication protocol is 
planned to be utilized alongside programming languag-
es such as Laravel, PHP, Python, and C (Laravel, 2022; Py-
thon Software Foundation, 2023) to develop an “Automat-
ed Crack Image Cloud Detection System”. This system in-
cludes the construction of a server, the design of a web 
API, the development of a deterioration detection module, 
a data analysis module, and an auto predictor application, 
as well as a “Bridge BIM Cloud Management System”. This 
infrastructure enables the automated uploading of deteri-
orated images, crack image recognition, result download-
ing, and report generation on the developed cloud plat-
form, thereby achieving automated crack detection while 
integrating BIM bridge models for deterioration records.

To train the crack image detection model, deteriorated 
bridge inspection images acquired in Taiwan are used in 
the training, validation, and testing datasets. These images 
not only depict the specific deterioration characteristics of 
bridges in Taiwan but also reflect the unique crack patterns 
found in Taiwanese bridges. The image content includes 
the essential elements needed by bridge inspection per-
sonnel. This approach distinguishes this study from previ-
ous studies on crack image detection in bridge deteriora-
tion, which used less original training images and relied on 
image processing techniques, such as image cropping, to 
augment the dataset. Such methods may not adequately 
represent the deteriorated characteristics resulting from 
long-term environmental impacts and usage habits spe-
cific to the bridges in this region.

3. Collection of deterioration images  
and training of the crack image  
recognition model
3.1. Deterioration images
Taiwan currently employs the Bridge Management System 
(TBMS2) for managing its bridge infrastructure. This sys-
tem utilizes a standardized bridge evaluation form to doc-
ument inspection findings and store corresponding imag-
es of deterioration. To facilitate component identification, 
TBMS2  assigns unique codes to elements such as gird-
ers, abutments, and piers. Inspectors systematically assess 
the condition of each component, recording details such 
as location, quantity, damage type, and potential caus-
es. Furthermore, the system allows for recommendations 
on repair methods and associated costs. This comprehen-
sive data enables engineers to effectively manage inspec-
tion and maintenance tasks, ultimately enhancing both ef-
ficiency and safety in bridge maintenance operations, as 
shown in Table 1 in real case scenarios. 
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To facilitate the identification of individual bridge com-
ponents, the TBMS2 system employs a unique coding sys-
tem using a  combination of letters and numbers. Each 
code starts with a specific letter that designates the com-
ponent type, followed by a  sequential number assigned 
according to the component’s position along the bridge, 
typically from the abutment at the starting point to the 
ending abutment. For instance, spans are denoted by the 
letter “S” and numbered sequentially from the starting 
abutment, such as S1, S2, and S3, representing the first, 
second, and third spans, respectively. Similarly, girders are 
represented by “G”, abutments by “A”, and piers by “P”, all 
numbered sequentially. Therefore, within the TBMS2 sys-
tem, “S1G2” refers to the second girder on the first span, 
and “P1-1” indicates the first sub-component of the first 
pier. This systematic coding scheme enables users to ef-
fortlessly identify and distinguish different structural ele-
ments within a bridge, as illustrated in Figure 1. 

During the inspection, each component’s condition is 
investigated according to the procedure. Bridge deterio-
ration manifests in various forms, primarily categorized 
as structural damage and surface deterioration. Structural 
damage significantly compromises the load-carrying ca-
pacity and safety of bridges. Examples include structural 
cracks that penetrate bridge decks, beams, and columns, 
as well as corrosion of reinforcement, leading to spalling 
of concrete and reduced structural durability. Surface de-
terioration primarily impacts the aesthetics and service 
life of bridges. This category encompasses issues such as 
infiltration, which causes deterioration of internal bridge 
materials due to moisture; efflorescence, which affects the 
bridge’s  appearance; and trusty stains on metal compo-
nents. These deterioration phenomena often interact and 
accelerate bridge degradation. Therefore, timely inspec-
tion and maintenance are crucial to ensuring the safety 

and proper functioning of bridges, as shown in Figure 2. 
The “Highway Bridge Inspection and Retrofitting Code” 
provides assessment tables for various bridge compo-
nents (Su et al., 2018). In the assessment tables for each 
component, there are items related to concrete structural 
crack evaluation, including degree (D), relevancy (R), and 
urgency (U) scores. During the evaluation process, in ad-
dition to considering the width of cracks, it is essential to 
assess whether water infiltration has occurred. When wa-
ter infiltrates concrete cracks, steel reinforcement corro-
sion can occur, reducing the effective cross-sectional ar-
ea and affecting the concrete design strength. This em-
phasizes the significance of crack detection in bridge in-
spections. Therefore, the deteriorated images collected for 
this study primarily include cracks and are mainly acquired 
from bridge inspections in Taiwan, with a final dataset of 
4,307 images.

3.2. YOLO deep learning model algorithm
The YOLO algorithm was introduced in 2015 and can rec-
ognize dynamic postures of pedestrians and vehicles. 
In addition, 2D image classification and 3D recognition 
technologies have been extensively developed (Lin et al., 
2019; Chang et al., 2017). In this study, the YOLOv4 and 
YOLOv7 algorithm (Redmon et al., 2016; Bochkovskiy et al., 
2020; WongKinYiu, 2023) were employed for training the 
crack image recognition model for deteriorated imag-
es. Initial training was conducted on the Colab platform 
(Google, 2021), followed by further training on a worksta-
tion. The model’s training results were evaluated based on 
the intersection over union (IOU) and mean average preci-
sion (mAP) metrics. The definition of the IOU metric is il-
lustrated in Figure 3, where “predict bounding box” repre-
sents the boundaries of the predicted object, and “ground 
truth” represents the boundaries of the actual object.

Table 1. Bridge regular inspection form (Su et al., 2018)

Inspection 
Items Location Number D E R U Damage Location Deterioration Type Cause of Damage

Pier/Cap 
beam P004 P4 3 1 2 2 P4 Backside of Cap 

Beam
Concrete Structural 

Crack
Visible cracks in concrete with 

infiltration

Recommended Repair Method Quantity Unit Unit Repair Price 
(NTD) Remarks

0.3mm Concrete Crack Repair 2 meters 700
P4 Visible concrete cracks with 
infiltration on the backside of 
cap beam, 2M*1 site.

Inspection 
Photos

Concrete structural crack

 

Date of 
Capture

2020/03/11
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Figure 1. Diagram of component coding method

Figure 2. Typical deterioration patterns, with: a – structural crack; b – spalling; c – corrosion; d – infiltration;  
e – efflorescence; and f – rusty stain

a) b)

c) d)

e) f)
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The mAP is calculated as the average of the sums of 
the average precision (AP) values for each category. The 
AP is defined as the area under the precision-recall (PR) 
curve. The X-axis of this curve represents the recall, while 
the Y-axis represents the precision (Pedregosa et al., 2011). 
The calculation formula is presented in Eqn (1), where P(k) 
represents the precision at a given recall point, and rel(k) 
denotes the true positive (TP) value (1 or 0) (Zhu, 2004). 
The definitions of the precision and recall are provided in 
Eqns (2) and (3), respectively:

( ) ( )( )
1 ;
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=
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3.3. Training workflow for the crack  
image recognition model
The training of deep learning neural networks consists of 
five main phases, as shown in Figure  4. First, the mod-
el makes predictions based on the training data, which 
are then evaluated by the loss function. Subsequently, the 
optimizer updates the model’s  weights and biases. This 
process repeats iteratively until the model converges. 
The dataset is divided into training and validation sets in 
a 4:1 ratio, with annotation performed using open-source 
software (Tzutalin, 2021). The validation set helps acceler-
ate model convergence during training. The loss function 
comprises three core components: 1. Object localization 
loss (IOU loss): Evaluates the overlap between predicted 
and actual annotation boxes; 2. Confidence loss: Measures 
the model’s confidence in its predictions; 3. Classification 
loss: Assesses the accuracy of category predictions. The 
calculation of the loss function is detailed in Eqns (4) to 
(8) (Guo et al., 2021). Additionally, pretrained weights and 
parameter settings are specified in Table 2. These param-

eter configurations not only expedite model convergence 
but also ensure optimal training results.
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Table 2. Training parameters in YOLOv4 & YOLOv7

Pre-trained weight Weight 
size

Number 
of 

anchors

Width & 
height

Batch 
size

IoU 
thresh-

old

yolov4-tiny.conv.29 19 MB 6 416x416 64 0.213
yolov4.conv.137 162 MB 9 416x416 64 0.213
yolov7.pt 72 MB Anchor-

free
416x416
640x640

32 0.20

Yolov7x.pt 136 MB 416x416
640x640

32 0.20

Note: Regarding pre-trained weights, both YOLOv4 and YOLOv7 
offer various options, each accompanied by a  corresponding 
configuration file. The parameters for Batch size and IoU threshold 
are set to default values.

Figure 3. Definition of IOU (intersection over union)

Object

Detected box

Detected box

Object

Area of overlap

Area of Union

IOU =

Predict bounding box

Ground truth
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4. Establishment of the server  
platform and Web API
4.1. Construction of the server  
network system architecture
The network server in this study adopts a standard Client-
Server architecture, utilizing a router to manage external 
connections and internal network distribution. The system 
operates on port 8080 for service communication and 
employs a fixed IP for external services. Internal network 
communication is conducted through port 80 for HTTP 
protocol, ensuring system stability and security. The over-
all network architecture, as shown in Figure 5, effectively 
distributes fixed IP addresses to internal network devices 
through the router.

4.2. Web API design
The Web API developed in this study is based on the HTTP 
communication protocol, implementing three core func-
tional interfaces: data upload, data download, and dete-
rioration detection module integration. Through integra-
tion with the auto predictor application, users can easily 

invoke these functions to achieve automated crack image 
recognition processes, as shown in Figure 6. The API de-
sign emphasizes reliable data transmission and process-
ing efficiency while providing an intuitive user interface.

5. Development of the server platform and 
deterioration detection website functions
5.1. Frontend design of the deterioration 
detection website
In the frontend, HTML (hypertext markup language) is 
used to create and edit web content, marked with tags to 
present the website’s designed content, as shown in Fig-
ure 7. The HTML-based web structure is built using various 
tags to create browsing pages for the deterioration detec-
tion website. In the backend, the PHP scripting language 
and Laravel are used to create the development frame-
work. Laravel follows the model-view-controller (MVC) ar-
chitecture, with the model representing logic and database 
design, the view for the web page display created using 
HTML, and the controller responding to requests and han-

Figure 4. Neural network training process

Figure 5. Network system configuration architecture

Server

Internet

 

WAN LAN0 1 2 3

PC 0
 

PC 1  

PC 2

Router
 

Firewall 

NAS server

Printer
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dling requested content. The controller can retrieve da-
ta from the model and display it on the browsing web 
page. In this study, HTML, PHP, and Laravel are utilized 
to develop and manage the system, following the frame-
work’s specifications, and create the deterioration detec-
tion website.

5.2. Website functions and results display
The website designed in this study includes functions such 
as select file, upload, reselect, and crack detection. Users 
can access the deterioration detection website via a web 
browser, click the “select file” button to choose either sin-
gle or multiple deteriorated images, and click the “upload” 
button to upload the deteriorated images to the AI server 
platform. If the wrong images are selected, users can click 
the “reselect” button to clear the selected deteriorated im-
ages. Once the deteriorated images are uploaded, users 
can click the “crack detection” button to initiate crack im-
age detection. The results are stored in the “predicted_im-
ages” folder on the server platform, as shown in Figure 8.

In the internal design of the website, the deep learn-
ing crack image detection model is integrated with the 

“crack detection” button; this button allows the program 
to initiate the crack image detection model. Additionally, 
the data import and export interfaces need to be designed 
appropriately. The data import interface ensures that the 
data to be recognized are correct and that the param-
eters are appropriate. The data export interface receives 
and stores the detection results, enabling subsequent data 
processing. Bridge inspection personnel can use the de-
terioration detection website using a web browser, with-
out the need for additional applications to perform crack 
image detection tasks. However, the process still requires 
manual operation, and complete automation is a  future 
development goal. In this study, several crack image de-
tection methods were developed to provide more opera-
tional choices.

6. Cloud platform development

In this study, the core architecture revolves around the 
“Automated Crack Image Cloud Detection System”, which 
seamlessly integrates a  deterioration detection module, 
a data analysis module, and an auto-predictor application.  

Figure 6. Web API function description

Figure 7. Frontend design of the deterioration detection website
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Collectively, these components form a holistic system that 
facilitates automated functionality, enabling users to ef-
fortlessly upload selected deterioration images, down-
load detection outcomes, and conduct in-depth analyses 
of crack detection results. Ultimately, users receive both 
the image detection results and a comprehensive outcome 
report. The deterioration detection module is integrated 
with the web API and systematically performs operation-
al procedures. This allows direct communication and con-
trol over the crack image recognition model. When a user 
uploads deteriorated images to the server, the deterio-
ration detection module is automatically initiated to per-
form deterioration detection tasks. After the detection task 
is completed, the detection network is automatically shut 
down, as the module’s tasks have been accomplished. To 
modify the crack image recognition model, only the cor-
responding module needs to be adjusted, obviating the 
need for a  complete redesign. In addition to the afore-
mentioned, this research has also developed a “Bridge BIM 
Cloud Management System”, which is synergistically inte-
grated with the Automated Crack Image Cloud Detection 
Platform. Bridge inspection personnel can initially create 
a comprehensive BIM model, as illustrated in Figure 9, and 
subsequently upload it to the cloud management system. 
The primary structure of the bridge’s BIM model is delin-
eated into three key components: (1) Structural Elements, 
(2) Span Systems, and (3) Pier Systems, as elaborated in 
Figure 10.

6.1. Image encoding and  
decoding – Base64 format
To prevent data bit loss during the transmission of de-
terioration images and ensure that the server does not 
encounter unrecognizable bits, each deterioration image 
is encoded and subsequently decoded upon receipt. The 

encoder and decoder designed in this study utilize the 
Base64 encoding system, which converts data into ASCII 
characters (ASCII Table, 2022), as illustrated in Figure 11. 
Furthermore, each encoded image is stored with the JSON 
data format. The upload and download of the deteriora-
tion images involve JSON format files.

6.2. Design of the deterioration  
detection module
The deterioration detection module is a crucial component 
of the automated crack image cloud detection system. 
This module is designed to systematically organize and 
recognize specified deterioration images. In addition, da-
ta preprocessing and postprocessing tasks are performed.  

Figure 8. Operation and results display of the deterioration detection website
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The method deterioration detection consists of the follow-
ing main steps, as shown in Figure 12. The deterioration 
detection module horizontally interfaces with the HTTP 
protocol and the automated prediction application, as 
shown in Figure 13. Encoded deterioration images are up-
loaded to the AI server via the HTTP protocol. The deterio-
ration detection module initiates the crack image recogni-
tion model, performs deterioration detection, and gener-
ates detection result reports. The detection results are en-
coded into Base64 format. The web API’s download task is 
initiated upon the completion of the aforementioned pro-
cesses. The automated prediction application subsequent-
ly emits a signal, notifying the AI server that the data can 
be downloaded. In summary, the respective components 
of the proposed architecture have the following functions:

	■ HTTP Request/Response:
The client and server communicate through standard-

ized Route GET and POST interfaces, as shown in Fig-
ure 13. The communication process includes requests from 
the client and responses from the server, with responses 
containing either execution results or failure reasons.

	■ Deterioration Detection Module:
The deterioration detection module processes da-

ta pre-processing and post-processing on the AI Server 
platform through the Deal with folder function, as shown 
in Figure 13. This module can batch process multiple de-
terioration images, sequentially registering and inputting 
them into the crack image recognition model. Recogni-

tion results are stored in designated folders and managed 
through the Read/Write data function, which records re-
sults and reads data uploaded from the local end.

	■ Automated Prediction Application:
The Auto predictor application uploads deterioration 

images to the AI Server platform after base64 encoding, 
as shown in Figure 14. After the deterioration detection 
module initiates, it performs image decoding and recog-
nition, then stores the encoded results in a newly created 
local folder through the Download function. The program 
terminates after the data analysis module generates the 
report.

6.3. Design of the data analysis module
After the deteriorated images have been analyzed by the 
crack image recognition model, they contain degradation 
information that has not been processed. To handle this 
large volume of image data, a data analysis module was 
designed. This module extracts, organizes, and analyzes 
the detection results to generate a final report. Bridge in-
spection personnel can review this report to understand 
the detection outcomes. The report includes details such 
as the image name, degradation name, degradation cat-
egory, component code, component name, bridge name, 
and degradation information, as illustrated in Figure 15. 
The recorded content is derived from the detection results 
shown in Figure 16, and the details are as follows: the type 
of degradation is labeled as “concrete structural crack”, the 

Figure 10. Bridge BIM model architecture diagram

Figure 11. Base64-based encoder and decoder
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Figure 12. Flowchart of deterioration detection module

Figure 13. System architecture of the deterioration detection module
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Figure 14. Components of automatic program design

Figure 15. Data analysis module architecture

Note: for this particular deteriorated image, there are four detected cracks, and the highest accuracy percentage for deterioration 
prediction is 1.0. The coordinates of the deterioration regions are also recorded in the report.

Figure 16. Information of recognized deterioration image
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degradation category is “class 1”, the component code is 
“16”, the component name is “girder”, the bridge name is 
[bridge name], and the degradation information specifies 
that there are a  total of 4 cracks, with the highest crack 
probability reaching 100%.

7. Validation of the cloud platform
This study validates the developed cloud platform through 
two main aspects: (1) evaluation of the crack image recog-
nition model’s performance metrics, and (2) verification of 
the automated crack detection system in practical applica-
tions. During system operation, users only need to execute 
the auto predictor application locally, which automatically 
connects to the Server for deterioration image detection. 
The entire process is highly automated, from image up-
load to recognition processing and result download, re-
quiring no manual intervention, as shown in Figure 17.

7.1. Evaluation metrics for the crack  
image recognition model
Using 4307 training images with 416×416 pixel di-
mensions and YOLOv7 pretrained weights, the model 
achieved a mean Average Precision (mAP) of 87.64%. By 
expanding the training dataset, not only was model ac-
curacy improved, but the training process also became 
more stable, as shown in Figure  18a. The study com-
pared various pretrained weights and image parameters 
(416×416, 640×640), with comprehensive results show-
ing YOLOv7’s superior performance over YOLOv4, as de-
tailed in Figure 18b and Table 3. Notably, using yolov7.pt 
achieved optimal results with the shortest training time 
while maintaining excellent accuracy, as illustrated in Fig-
ure 19.

Figure 17. Execution process of the automatic crack image recognition system

Figure 18. a – mAP – YOLOv7 (for 416); b – mAP – YOLOv7 & YOLOv7x (for 416, 640)
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7.2. Using the automated crack cloud 
detection system to evaluate  
deteriorated images
System validation was conducted using two types of test 
images: bridge inspection photographs and deterioration 
images from short beam shear experiments. The results, 
shown in Figure 20 and Figure 21, demonstrate that even 
with complex background conditions, the system accurate-
ly identifies and frames major cracks in structural com-
ponents. These results confirm that the system not only 
achieves its automated detection objectives but also pro-
vides bridge inspection personnel with a quick and accu-
rate crack identification tool.

7.3. Automated integration with bridge BIM 
cloud management system
During the inspection process, bridge inspection personnel 
photograph and annotate the discovered cracks, as illus-
trated in Figure 22, thereby systematically investigating the 
locations of crack occurrences on the bridge. Regarding 
the captured deterioration images, the system automati-
cally transmits them to the Server, and upon completion of 
the detection results, the outcomes are automatically fed 
back into the BIM model, as depicted in Figure 23. The re-
lationship between the Server and the BIM Cloud Manage-
ment System is further elucidated in Figure 24.

8. Conclusions and recommendations
This study develops a cloud-based platform, which is di-
vided into five main components: (1) AI Server platform 
and Web API design, (2) deterioration detection website 

development, (3) automated program design (including 
deterioration detection module, data analysis module, and 
auto predictor application program), (4) training of crack 
image recognition model, and (5) bridge BIM cloud man-
agement system. Through the integration of these mod-
ules, the deterioration recorded in the bridge BIM mod-
el can be automatically uploaded to the cloud platform, 
where crack image recognition is performed, and the re-
sults are then downloaded and visualized on the bridge 
BIM model, achieving automated crack recognition. The 
training and validation datasets used in this study were 
original images of deterioration taken by bridge inspec-
tors, without any image enhancement or cropping. Simi-
larly, the test dataset images used for deterioration detec-
tion were also not processed. Additionally, this study de-
veloped a deterioration detection website, where users can 
log in by entering the website address, select the deterio-
ration image to be recognized, and immediately perform 
crack image recognition. In summary, the conclusions and 
recommendations of this study are as follows:

	■ This study successfully improved the traditional man-
ual identification of deterioration images by devel-
oping an automated crack detection system using 
both YOLOv4  and YOLOv7  algorithms for model 
training. The YOLOv7  model achieved a  mean Av-
erage Precision (mAP) of 87.64%, with crack predic-
tion probability exceeding 80%, significantly enhanc-
ing the objectivity and consistency of bridge inspec-
tions. The integration of this system with the Bridge 
BIM cloud management system has markedly im-
proved inspection efficiency and reduced the likeli-
hood of crack omissions.

Figure 19. Comparison of recall, mAP, precision and training time

Table 3. Training result in YOLOv4 & YOLOv7

Model Pre-trained weights Network Size Precision Recall mAP@0.5 F1 Training time (h/m)

YOLOv4 tiny conv.29 416×416 0.63 0.73 0.67 0.676 05/45
YOLOv4 conv.137 416×416 0.89 0.73 0.82 0.802 32/20
YOLOv7 yolov7.pt 416×416 0.9171 0.82 0.87 0.828 20/32
YOLOv7 yolov7.pt 640×640 0.8886 0.84 0.86 0.835 29/01
YOLOv7-X yolov7x.pt 416×416 0.9049 0.81 0.87 0.84 26/24
YOLOv7-X yolov7x.pt 640×640 0.8898 0.84 0.87 0.845 38/45
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Figure 20. Validation for bridge inspections

Figure 21. Validation for short beam specimens
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Figure 22. Deterioration records on the bridge BIM model

Figure 23. Displaying analysis results on the BIM model

Figure 24. Automated crack image cloud detection system and bridge BIM cloud management system
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	■ This study pioneered the use of 4,307 deterioration 
images from long-term bridge inspections in Taiwan 
for model training. These images encompass Tai-
wan’s  unique environmental conditions and crack 
characteristics, providing a  locally optimized deep 
learning solution for Taiwan’s bridge inspection sec-
tor with high regional applicability.

	■ The deterioration detection website enables bridge 
inspection personnel to perform crack image recog-
nition through a  web browser without specialized 
equipment or complex operations, significantly low-
ering technical barriers. The system offers multiple 
detection methods, allowing inspectors to choose 
the most suitable approach for different scenarios, 
enhancing inspection flexibility and efficiency, as il-
lustrated in Figure 8.

	■ This research successfully achieved deep integration 
between the “Automated Crack Image Cloud Detec-
tion System” and the “Bridge BIM Cloud Manage-
ment System”, enabling direct linkage between crack 
information and three-dimensional models. This in-
novation allows engineering personnel to intuitively 
view crack locations and information on visualized 
bridge models, substantially improving the intuitive-
ness and efficiency of bridge maintenance manage-
ment while providing decision-makers with compre-
hensive visual data support.

	■ Engineering personnel can create BIM bridge mod-
els based on structural design drawings and store 
them in the cloud. During deterioration inspection, 
inspectors can photograph cracks, and the system 
automatically integrates model and crack informa-
tion with descriptions, achieving full digital man-
agement from inspection to maintenance, providing 
a complete digital solution for bridge lifecycle man-
agement.

	■ The deterioration detection module of the “Auto-
mated Crack Image Cloud Detection System” imple-
ments a fully automated process from image upload, 
sorting, and recognition to result encoding, thor-
oughly addressing the time-consuming and error-
prone issues of traditional manual inspection. The 
data analysis module automatically summarizes, or-
ganizes, and analyzes recognition results, generat-
ing comprehensive reports including crack location, 
type, and severity, enabling bridge inspection per-
sonnel to quickly grasp structural health conditions. 
This automation not only improves work efficiency 
and ensures consistency and reliability of inspection 
results but also provides timely and accurate data 
support for maintenance decisions, significantly en-
hancing the scientific nature of bridge management.

	■ The auto predictor application demonstrates stable 
operation across various operating systems, includ-
ing Windows 10, Windows 11, and Windows Server 
2019, ensuring system applicability in diverse work 
environments and providing highly practical tool 
support for bridge inspection work.

	■ The system achieved excellent recognition results in 
both real bridge inspection environments and labo-
ratory short beam shear test deterioration images, 
demonstrating its applicability and reliability across 
different scenarios. These comprehensive validation 
results, as shown in Figure 20 and Figure 21, prove 
the system’s  effectiveness in supporting practical 
bridge inspection requirements and providing reli-
able technical assurance for bridge safety monitor-
ing.

	■ In this study, the automated crack recognition mod-
el’s test results may exhibit misjudgment, where the 
model incorrectly labels non-crack regions as cracks, 
affecting accuracy and reliability. The primary rea-
son is the diversity issue of the training data, which, 
despite utilizing deterioration images from Taiwan, 
fails to encompass all environmental variations, such 
as different lighting conditions and background 
noise, resulting in poor model performance in new 
environments. Furthermore, although YOLOv4  and 
YOLOv7  models are employed, these models may 
still misclassify background textures or shadows as 
cracks in complex backgrounds. Therefore, future 
research can consider utilizing updated versions of 
the YOLO model to enhance detection accuracy and 
adopt a robust annotation method for deterioration.

	■ Although the system demonstrates strong technical 
performance, its practical effectiveness requires fur-
ther validation due to the current limitation of lack-
ing direct feedback from engineering users. To en-
hance the system’s practicality, future research will 
implement a comprehensive user evaluation plan, in-
viting bridge inspection engineers to test the system. 
Through questionnaires and interviews, we will col-
lect user feedback on various aspects, including sys-
tem operation, crack detection, workflow integration, 
and BIM visualization interface, to optimize system 
functionality and ensure alignment with practical re-
quirements.

	■ Future research directions will focus on optimizing 
the latest YOLOv9 algorithm to improve the accu-
racy of crack recognition. Additionally, we plan to 
develop an API interface with existing bridge man-
agement systems (such as TBMS2) to facilitate data 
exchange and achieve information interoperability. 
Furthermore, we will develop an automated evalua-
tion mechanism for DRU (Degree, Relevancy, Urgen-
cy) values, which will automatically generate scores 
based on crack characteristics, reducing the subjec-
tive nature of manual evaluations.

Acknowledgements
We would like to express our sincere gratitude to CTCI En-
gineering Service Co. Ltd. for providing deteriorated im-
ages captured during bridge inspections, which enabled 
the smooth progress of this research. Their contribution 
has enriched the training database for image recognition 



Journal of Civil Engineering and Management, 2025, 31(7), 710–728 727

models and ensured its relevance to practical field condi-
tions. Additionally, we are grateful for their invaluable ex-
perience in bridge inspection work.

Funding 
This work was supported by the Qilu Expressway Co., LTD. 
under Grant QL-2022162KY-7.

Disclosure statement 
The authors declare that they have no known competing 
financial interests or personal relationships that could have 
appeared to influence the work reported in the paper.

Data availability statement
Data has been shared in this text.

Author contributions
Wein Zhu: Methodology, Data analysis, results discussion, 
Writing – Original draft; Jianing Li: Data collection, Data 
analysis, Methodology; Writing – Original draft; Linghan 
Wang:Data collection, Data analysis, Methodology; Xiao-
dong Li: Supervision; results discussion, Writing – Review-
ing and Editing.

References
ASCII Table. (2022). ASCII table mapping. https://www.asciitable.com 
Azhar,  S., Brown,  J., & Farooq,  B. (2012). Building Information 

Modeling (BIM): A new paradigm for the design and manage-
ment of construction projects. Journal of Construction Engi-
neering and Management, 138(5), 575–585. 
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000527 

Berners-Lee, T., Fielding, R., & Frystyk, H. (1996). Hypertext transfer 
protocol--HTTP/1.0 (RFC 1945). 
https://doi.org/10.17487/rfc1945 

Beskopylny, A. N., Shcherban’, E. M., Stel’makh, S. A., Mailyan, L. R., 
Meskhi, B., Razveeva,  I., Kozhakin, A., El’shaeva, D., Beskopyl-
ny, N., & Onore, G. (2023). Detecting cracks in aerated con-
crete samples using a convolutional neural network. Applied 
Sciences, 13(3), Article 1904. 
https://doi.org/10.3390/app13031904 

Bevc, L., Mahut, B., & Grefstad, K. (1999). Review of current prac-
tice for assessment of structural condition and classification of 
defects (Technical Report). BRIME Project (Bridge Management 
in Europe), Deliverable D2.

Bochkovskiy,  A., Wang,  C.  Y., & Liao,  H.  Y.  M. (2020). YOLOv4: 
Optimal speed and accuracy of object detection. arXiv. 
https://doi.org/10.48550/arXiv.2004.10934 

Byun, N., Han, W. S., Kwon, Y. W., & Kang, Y. J. (2021). Develop-
ment of BIM-based bridge maintenance system considering 
maintenance data schema and information system. Sustain-
ability, 13(9), Article 4858. https://doi.org/10.3390/su13094858 

Carion,  N., Massa,  F., Synnaeve,  G., Usunier,  N., Kirillov,  A., & 
Zagoruyko, S. (2020). End-to-end object detection with trans-
formers. In A. Vedaldi, H. Bischof, T. Brox, & J. M. Frahm (Eds.), 
Lecture notes in computer science. Vol. 12346: Computer vi-
sion – ECCV 2020 (pp. 213–229). 
https://doi.org/10.1007/978-3-030-58452-8_13 

Chan, B. (2019). Current status and prospects of image recogni-
tion and deep learning in intelligent transportation systems. 
Chinese Technology, 123, 342–353.

Chang, C. Y., Chen, L. C., & Ma, C. C. (2017). Three-dimensional 
measurement of dynamic full-field displacement by stereo DIC 
using one high-speed camera. In 15th Asia Pacific Conference 
for Non-Destructive Testing (APCNDT2017). Singapore. 

Dang,  J., Chun, P.  J., Mizumoto, T., Liu,  J., & Fujishima, T. (2021). 
Multi-type bridge damage detection method based on YOLO. 
Intelligence, Informatics and Infrastructure, 2, 447–456. 
https://doi.org/10.11532/jsceiii.2.J2_447 

Davila Delgado,  J. M., Butler,  L.  J., Gibbons,  N., Brilakis,  I., 
Elshafie, M. Z. E. B., & Middleton, C. (2017). Management of 
structural monitoring data of bridges using BIM. Bridge Engi-
neering, 170(3), 204–218. 
https://doi.org/10.1680/jbren.16.00013 

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., 
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gel-
ly,  S., Uszkoreit,  J., & Houlsby, N. (2021). An image is worth 
16x16 words: Transformers for image recognition at scale. In 
The Ninth International Conference on Learning Representa-
tions. 

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., 
& Berners-Lee,  T. (1999). Hypertext Transfer Protocol-
-HTTP/1.1 (RFC 2616). https://doi.org/10.17487/rfc2616 

Google. (2021). A colaboratory editing environment allows you to 
combine executable code [Web-based notebook]. 
https://colab.research.google.com/notebooks/intro.ipynb 

Guo, C., Lv, X., Zhang, Y., & Zhang, M. (2021). Improved YOLOv4-
tiny network for real-time electronic component detection. 
Scientific Reports, 11(1), Article 22744. 
https://doi.org/10.1038/s41598-021-02225-y 

Hsieh, C. Y. (2018). Integration of image processing, computer vi-
sion, and artificial intelligence to identify concrete surface cracks 
[Master’s thesis]. Department of Civil Engineering, National Tai-
wan University.

Hsu, S. H., Chang, T. W., & Chang, C. M. (2021). Concrete surface 
crack segmentation based on deep learning. In P. Rizzo, & 
A.  Milazzo (Eds.). Lecture notes in civil engineering. Vol 128: 
European workshop on structural health monitoring (EWSHM 
2020) (pp. 24–34). Springer, Cham. 
https://doi.org/10.1007/978-3-030-64908-1_3 

Jailia, M., Kumar, A., Agarwal, M., & Sinha,  I. (2016). Behavior of 
MVC (Model View Controller) based web application devel-
oped in PHP and .NET framework. In 2016 International Con-
ference on ICT in Business Industry & Government (ICTBIG), In-
dore, India. IEEE. https://doi.org/10.1109/ICTBIG.2016.7892651 

Kassem, M., & Succar, B. (2015). A conceptual framework for BIM-
enabled asset management. Journal of Facilities Management, 
13(2), 162–179. 

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., & Shah, M. 
(2022). Transformers in vision: A survey. ACM Computing Sur-
veys, 54(10), 1–41. https://doi.org/10.1145/3505244 

Kivimäki, T., & Heikkilä, R. (2010). Bridge information modelling 
(BrIM) and model utilization at worksites in Finland. In Pro-
ceedings of the 27th International Symposium on Automation 
and Robotics in Construction (ISARC) (pp. 505–513), Bratislava, 
Slovakia. https://doi.org/10.22260/ISARC2010/0054 

Krishnamurthy, B., Mogul, J. C., & Kristol, D. M. (1999). Key differ-
ences between HTTP/1.0 and HTTP/1.1. Computer Networks, 
31(11–16), 1737–1751. 
https://doi.org/10.1016/S1389-1286(99)00008-0 

Kruachottikul,  P., Cooharojananone,  N., Phanomchoeng,  G., 
Muangsiri, W., & Silapachote, P. (2021). Deep learning-based 
visual defect-inspection system for reinforced concrete bridge 

https://www.asciitable.com
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000527
https://doi.org/10.17487/rfc1945
https://doi.org/10.3390/app13031904
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.3390/su13094858
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.11532/jsceiii.2.J2_447
https://doi.org/10.1680/jbren.16.00013
https://doi.org/10.17487/rfc2616
https://colab.research.google.com/notebooks/intro.ipynb
https://doi.org/10.1038/s41598-021-02225-y
https://doi.org/10.1007/978-3-030-64908-1_3
https://doi.org/10.1109/ICTBIG.2016.7892651
https://doi.org/10.1145/3505244
https://doi.org/10.22260/ISARC2010/0054
https://doi.org/10.1016/S1389-1286(99)00008-0


728 H.-Y. Hsieh et al. Development of an automated surface crack detection and BIM-integrated management system for concrete bridges

substructure: A  case of Thailand’s  department of highways. 
Journal of Civil Structural Health Monitoring, 11, 949–965. 
https://doi.org/10.1007/s13349-021-00490-z 

Laravel. (2022). The PHP framework for web artisans. 
https://laravel.com/ 

Lauridsen, J., & Lassen, B. (1999). The Danish bridge management 
system DANBRO. In P. C. Das (Ed.), Management of highway 
structures (pp. 5–10). Thomas Telford.

LeCun, Y., Bottou,  L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Journal of 
the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791 

Li, H., & Zhang, Y. (2022). Enhanced bridge maintenance manage-
ment using BIM technology. Journal of Infrastructure Systems, 
28(1), Article 04022001. 
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000575 

Li, R., Yu, J., Li, F., Yang, R., Wang, Y., & Peng, Z. (2023). Automatic 
bridge crack detection using Unmanned aerial vehicle and 
Faster R-CNN. Construction and Building Materials, 362, Article 
129659. https://doi.org/10.1016/j.conbuildmat.2022.129659 

Lin, P. T., Yao, Y. T., Chen, Y. H., Lin, S. S., Chang, C. Y., Liu, K. Y., 
Lin,  Y.  H., & Lu,  L.  H. (2019). Stereovision-based automatic 
crack detection for 3D bridge inspection. In 2nd World Con-
gress on Condition Monitoring (WCCM). Singapore.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. 
(2021). Swin transformer: Hierarchical vision transformer using 
shifted windows. In 2021 IEEE/CVF International Conference on 
Computer Vision (ICCV), Montreal, QC, Canada. 
https://doi.org/10.1109/ICCV48922.2021.00986 

Lu, W. H., Lin, S. P., Lin, P. T., & Wu, Y. W. (2018). Development and 
applications of artificial intelligence image recognition system. 
In Proceedings of the 19th Conference on Nondestructive Testing 
Technology (CNDT). Taiwan.

Maqsood, T., & Memon, A. (2021). Integration of UAVs and BIM 
for bridge inspection and maintenance. Automation in Con-
struction, 122, Article 103461. 
https://doi.org/10.1016/j.autcon.2020.103461 

Miyamoto, A., & Motoshita, M. (2015). Development and practical 
application of a bridge management system (J-BMS) in Japan. 
Civil Engineering Infrastructures Journal, 48(1), 189–216. 

Opara,  J. N., Thein, A. B. B., Izumi, S., Yasuhara, H., & Chun, P.  J. 
(2021). Defect detection on asphalt pavement by deep learn-
ing. International Journal of GEOMATE, 21(83), 87–94. 
https://doi.org/10.21660/2021.83.6153 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., 
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., 
Vanderplas,  J., Passos,  A., Cournapeau,  D., Brucher,  M., Per-
rot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning 
in Python. Journal of Machine Learning Research, 12, 2825–
2830. 

Python Software Foundation. (2023). Documentation for Py-
thon’s standard library, along with tutorials and guides. 
https://www.python.org/ 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only 
look once: unified, real-time object detection. In 2016 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR) 
(pp. 779–788), Las Vegas, NV, USA. IEEE. 
https://doi.org/10.1109/CVPR.2016.91 

Rezaie, A., Achanta, R., Godio, M., & Beyer, K. (2020). Comparison 
of crack segmentation using digital image correlation meas-
urements and deep learning. Construction and Building Materi-
als, 261, Article 120474. 
https://doi.org/10.1016/j.conbuildmat.2020.120474 

Song,  Y.  C., Chen,  C.  C., Lai,  M.  C., Hsu,  C.  C., Hung,  H.  H., & 
Liu, K. Y. (2014). Development of bridge lifecycle disaster pre-
vention management system (Report No. NCREE-2014-027). 
National Center for Research on Earthquake Engineering.

Su,  C.  W., Zhang,  S.  Y., Yang,  Y.  W., Huang,  C.  H., Jiang,  M.  Y., 
Yao,  N.  J., Huang,  R.  Y., Yang,  Z.  B., Tsai,  M.  G., Yeh,  C.  C., 
Hsu, W. K., Jen, Y. Y., Liao, H. G., Chuang, Y. H., & Liao, A. Z. 
(2018). Planning for the establishment of the second-generation 
bridge management information system in Taiwan (Part three). 
Institute of Transportation, Ministry of Transportation and 
Communications.

Tay,  Y., Dehghani,  M., Bahri,  D., & Metzler,  D. (2022). Efficient 
transformers: A survey. ACM Computing Surveys, 55(6), Article 
109. https://doi.org/10.1145/3530811 

Thompson, P. D., Small, E. P., Johnson, M., & Marshall, A. R. (1998). 
The Pontis bridge management system. Structural Engineering 
International, 8(4), 303–308. 
https://doi.org/10.2749/101686698780488758 

Tong, Z., Gao, J., & Zhang, H. (2018). Innovative method for rec-
ognizing subgrade defects based on a  convolutional neural 
network. Construction and Building Materials, 169, 69–82. 
https://doi.org/10.1016/j.conbuildmat.2018.02.081 

Tzutalin. (2021). labelImg [Computer software]. GitHub. 
https://github.com/tzutalin/labelImg 

Wang,  C.  Y., Bochkovskiy,  A., & Liao,  H.  Y.  M. (2023). YOLOv7: 
Trainable bag-of-freebies sets new state-of-the-art for real-
time object detectors. In 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (pp. 7464–7475), 
Vancouver, BC, Canada. IEEE. 
https://doi.org/10.1109/CVPR52729.2023.00721 

WongKinYiu. (2023). Open source YOLOv7 [Code repository]. 
GitHub. https://github.com/WongKinYiu/yolov7 

World Wide Web Consortium. (2022). Hypertext Transfer Protocol – 
HTTP/1.1. (Technical standard). https://www.w3.org/Protocols/
rfc2616/rfc2616.html 

Zhang, Q., Barri, K., Babanajad, S. K., & Alavi, A. H. (2021). Real-
time detection of cracks on concrete bridge decks using deep 
learning in the frequency domain. Engineering, 7(12), 1786–
1796. https://doi.org/10.1016/j.eng.2020.07.026 

Zhang, Y., Zuo, Z., Xu, X., Wu,  J., Zhu,  J., Zhang, H., Wang,  J., & 
Tian,  Y. (2022). Road damage detection using UAV images 
based on multi-level attention mechanism. Automation in Con-
struction, 144, Article 104613. 
https://doi.org/10.1016/j.autcon.2022.104613 

Zhu, M. (2004). Recall, precision and average precision. Department 
of Statistics and Actuarial Science, University of Waterloo.

https://doi.org/10.1007/s13349-021-00490-z
https://laravel.com/
https://doi.org/10.1109/5.726791
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000575
https://doi.org/10.1016/j.conbuildmat.2022.129659
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1016/j.autcon.2020.103461
https://doi.org/10.21660/2021.83.6153
https://www.python.org/
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1016/j.conbuildmat.2020.120474
https://doi.org/10.1145/3530811
https://doi.org/10.2749/101686698780488758
https://doi.org/10.1016/j.conbuildmat.2018.02.081
https://github.com/tzutalin/labelImg
https://doi.org/10.1109/CVPR52729.2023.00721
https://github.com/WongKinYiu/yolov7
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://doi.org/10.1016/j.eng.2020.07.026
https://doi.org/10.1016/j.autcon.2022.104613

