Exploring spatial programming through modularity based evolutionary computation
DOI: https://doi.org/10.3846/jau.2025.22138Abstract
The application of evolutionary computing in architecture has advanced beyond active feedback to designers by integrating natural processes with computation to synchronize input from the final solution. Following knowledge in digital morphogenesis, new approaches can be formed by examining design issues deemed non-pragmatic and abstract, such as function in spatial programming. The study presented in this paper explores an approach based on the principle of modularity, which describes a biological system’s ability to organize distinct, independent units to increase the system’s adaptability. By employing modularity in evolutionary computation, we can characterize function as an abstract feature of phenotypes. The basic modularity method is simulated by developing a spatial program with dynamic programmatic functions to see how adaptable units are as spatial program components.
Keywords:
morphogenesis, evolutionary computation, genetic algorithm, spatial programming, modularityHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Baden, N., & Taghizadeh, M. (2023). Building performance optimisation tools for the decarbonisation of Swedish buildings. http://lup.lub.lu.se/student-papers/record/9130848
Ball, P. (2009). Nature’s patterns: A tapestry in three parts. Oxford University Press.
Bartz‐Beielstein, T., Branke, J., Mehnen, J., & Mersmann, O. (2014). Evolutionary algorithms. WIREs Data Mining and Knowledge Discovery, 4(3), 178–195. https://doi.org/10.1002/widm.1124
Canestrino, G., Laura, G., Spada, F., & Lucente, R. (2020). Generating architectural plan with evolutionary multiobjective optimization algorithms: A benchmark case with an existent construction system. In Blucher Design Proceedings (pp. 149–156). Blucher. https://doi.org/10.5151/sigradi2020-21
Davis, D. (2009). Evolving digital morphogenesis by means of biology and computer science [Thesis, Victoria University]. https://www.danieldavis.com/evolving-digital-morphogenesis/
Dixit, S., & Stefańska, A. (2023). Bio-logic, a review on the biomimetic application in architectural and structural design. Ain Shams Engineering Journal, 14(1), Article 101822. https://doi.org/10.1016/j.asej.2022.101822
El-Shorbagy, M. A., & El-Refaey, A. M. (2020). Hybridization of Grasshopper optimization algorithm with genetic algorithm for solving system of non-linear equations. IEEE Access, 8, 220944–220961. https://doi.org/10.1109/ACCESS.2020.3043029
Fogel, D. B. (1999). An overview of evolutionary programming. In L. D. Davis, K. De Jong, M. D. Vose, & L. D. Whitley (Eds.), Evolutionary algorithms (Vol. 111, pp. 89–109). Springer. https://doi.org/10.1007/978-1-4612-1542-4_5
Gökmen, S. (2020). Rediscovering Goethe’s concept of polarity: A new direction for architectural morphogenesis. Metu Journal of the Faculty of Architecture, 37(1), 51–72. https://doi.org/10.4305/METU.JFA.2020.1.5
Harani, A. R., Atmodiwirjo, P., Yatmo, Y. A., & Riskiyanto, R. (2021). The existence of a shortcut as an urban space system to support physic and mental health. IOP Conference Series: Earth and Environmental Science, 623(1), Article 012041. https://doi.org/10.1088/1755-1315/623/1/012041
Harding, J., & Brandt-Olsen, C. (2018). Biomorpher: Interactive evolution for parametric design. International Journal of Architectural Computing, 16(2), 144–163. https://doi.org/10.1177/1478077118778579
Kamaoğlu, M. (2023). The idea of evolution in digital architecture: Toward united ontologies? International Journal of Architectural Computing, 21(4), 622–634. https://doi.org/10.1177/14780771231174890
Kasyanov, N. (2020). Research on the similarities of morphogenesis in architecture and nature. In Proceedings of the 2nd International Conference on Architecture: Heritage, Traditions and Innovations (AHTI 2020) (Vol. 471, pp. 260–264), Moscow, Russia. https://doi.org/10.2991/assehr.k.200923.045
Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: Past, present, and future. Multimedia Tools and Applications, 80(5), 8091–8126. https://doi.org/10.1007/s11042-020-10139-6
Leach, N. (2009). Digital morphogenesis. Architectural Design, 79(1), 32–37. https://doi.org/10.1002/ad.806
Leach, N., Turnbull, D., & Williams, C. (Eds.). (2004). Digital tectonics. Wiley-Academy.
Melo, D., Porto, A., Cheverud, J. M., & Marroig, G. (2016). Modularity: Genes, development, and evolution. Annual Review of Ecology, Evolution, and Systematics, 47(1), 463–486. https://doi.org/10.1146/annurev-ecolsys-121415-032409
Miikkulainen, R., & Forrest, S. (2021). A biological perspective on evolutionary computation. Nature Machine Intelligence, 3(1), 9–15. https://doi.org/10.1038/s42256-020-00278-8
Minter, N. J., Franks, N. R., & Robson Brown, K. A. (2012). Morphogenesis of an extended phenotype: Four-dimensional ant nest architecture. Journal of The Royal Society Interface, 9(68), 586–595. https://doi.org/10.1098/rsif.2011.0377
Navarro-Mateu, D., & Cocho-Bermejo, A. (2019). Evo-devo algorithms: Gene-regulation for digital architecture. Biomimetics, 4(3), Article 58. https://doi.org/10.3390/biomimetics4030058
Rees, J. M. (2018). Surform: An architectural vocabulary of morphogenesis. Footprint, (22), 113–122. https://doi.org/10.7480/footprint.12.1.1751
Riskiyanto, R., Andri Yatmo, Y., & Atmodiwirjo, P. (2021). Reading (Hidden) dialogue of organic tectonics. The Plan Journal, 6(2). https://doi.org/10.15274/tpj.2021.06.02.5
Roudavski, S. (2009). Towards morphogenesis in architecture. International Journal of Architectural Computing, 7(3), 345–374. https://doi.org/10.1260/147807709789621266
Suharjito, S., & Muslim, M. (2023). Optimization of facility layout problems using genetic algorithm. Syntax Literate; Jurnal Ilmiah Indonesia, 7(9), 16058–16077. https://doi.org/10.36418/syntax-literate.v7i9.13787
Thompson, D. W. (1992). On growth and form (J. T. Bonner, Ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781107325852
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.