Share:


The analysis of rational component parameters for stress ribbon through steel arch footbridges

    Vilius Karieta Affiliation

Abstract

The article discusses the main component parameters and their interdependencies for a composite stress ribbon trough arch structure. The paper presents a methodology for balancing the combined suspension through arch steel bridge structure, suggests analytical methods for putting together the bearing components of the bridge and considers rational component parameters.  

Keyword : stress ribbon bridge, steel bridge, arch bridge, equilibrium structure, rational component parameters, symmetrical loads, geometrically nonlinear analysis

How to Cite
Karieta, V. (2018). The analysis of rational component parameters for stress ribbon through steel arch footbridges. Engineering Structures and Technologies, 10(2), 72-77. https://doi.org/10.3846/est.2018.6480
Published in Issue
Nov 13, 2018
Abstract Views
1570
PDF Downloads
869
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bleicher, A., Schauer, T., Valtin, M., Raisch, M., & Schlaich, M. (2011, August). Active vibration control of a light and flexible stress ribbon footbridge using pneumatic muscles. In Preprints of the 18th IFAC World Congress, (pp. 911-916). Milano, Italy. https://doi.org/10.3182/20110828-6-IT-1002.02781

Juozapaitis, A., Vainiūnas, P., & Kaklauskas, G. (2006). A new steel structural system of a suspension pedestrian bridge. Journal of Constructional Steel Research, 62(12), 1257-1263. https://doi.org/10.1016/j.jcsr.2006.04.023

Karieta, V. (2017). Vienajuosčių kabamųjų paremtų arka pėsčiųjų tiltų pusiausvirosios sistemos komponavimas. Science – Future of Lithuania, 9(5), 495-499. https://doi.org/10.3846/mla.2017.1084

Karieta, V. (2010). Analysis of the single-lane suspension supported on arch pedestrian multispan bridge behaviour and research rational parameters (Master’s thesis). Vilnius Gediminas Technical University, Lithuania.

Kulbach, V. (2007). Cable structures. Design and analysis. Tallin: Estonian Academy Publisher. 224 p.

Liu, Y., Zwingmann, B., & Schlaich, M. (2016). Advantages of using CFRP cables in orthogonaly loaded cable structures. AIMS Materials Science, 3(3), 862-880. https://doi.org/10.3934/matersci.2016.3.862

Sandovič, G., Juozapaitis, A., & Gribniak, V. (2017). Experimental and analytical investigation of deformations and stress distribution in steel bands of a two-span stress-ribbon pedestrian bridge. Mathematical Problems in Engineering, 2017. Article ID 9324520. https://doi.org/10.1155/2017/9324520

Sandovič, G., Juozapaitis, A., & Kliukas, R. (2011). Simplified engineering method of suspension two-span pedestrian steel bridges with flexible and rigid cables under action of asymmetrical loads. The Baltic Journal of Road and Bridge Engineering, 6(4), 267-273. https://doi.org/10.3846/bjrbe.2011.34

Schlaich, M., Brownlie, K., Conzett, J., Sobrino, J., Strasky, J., & Takenouchi, K. (2005). Guidelines for the design of footbridges. Stuttgart: Sprint-Digital-Druck. 154 p.

Strasky, J. (2005). Stress ribbon and cable-supported pedestrian bridges. London: Thomas Telford Ltd. 232 p. https://doi.org/10.1680/sracspb.32828

Strasky, J. (2008, July 10-14). Stress – ribbon pedestrian bridges supported or suspended on arches. In Chinese-Croatian Joint Colloquium “Long arch bridges”, (pp. 135-148). Brijuni Islands.

Troyano, L. F. (2003). Bridge engineering: a global perspective. London: Tomas Telford Ltd. 775 p. https://doi.org/10.1680/beagp.32156